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A computational method is proposed for the dynamics of solids capable of twinning
and phase transitions. In a two-dimensional, sharp-interface model of twinning, the
stored-energy function is a nonconvex potential with multiple wells. The evolution
of twin interfaces is governed by field equations and jump conditions of momentum
balance, and by a kinetic relation expressing the interface velocity as a function of the
local driving traction and interfacial orientation. A regularized version of the model
is constructed based on the level-set method. A level-set function which changes
signs across the interface is introduced. The evolution of this function is described
by a Hamilton–Jacobi equation, whose velocity coefficient is determined by the
kinetic relation. Jump conditions are thereby eliminated, allowing finite-difference
discretization. Numerical simulations exhibit complex evolution of the interface,
including cusp formation, needle growth, spontaneous tip splitting, and topological
changes that result in microstructure refinement. The results capture experimentally
observed phenomena in martensitic crystals.c© 1999 Academic Press

0. INTRODUCTION

We present a new numerical method for the computation of propagating interfaces in solid
materials, such as crystals undergoing twinning, or shape-memory alloys capable of phase
transitions of austenite–martensite type. Phase boundaries propagate in crystalline solids at
subsonic speeds that cannot be determined solely from the constitutive law and the balance
laws of continuum mechanics. Various models of phase-boundary propagation involve a
coupling of field equations and jump conditions on evolving discontinuity surfaces, which is
not amenable to the use of standard computational techniques. The present paper represents
an effort to overcome such difficulties.
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Many crystalline solids admit multiple phases. Each phase is associated with a distinct
crystal symmetry type or orientation of the lattice. The experimentally observed mechan-
ical behavior of shape-memory alloys is quite complex. Under a suitable combination of
thermal and mechanical loading, they develop spatially complexmicrostructures. These
comprise a collection ofphase boundariesbetween regions of the body in different phases,
or twin interfacesbetween differently oriented twin lattice variants. Although the behavior
within each phase or variant is often essentially elastic, interface evolution is accompanied
by energy dissipation. As a result, the overall mechanical response of these materials is
hysteretic. In biaxial loading experiments in a Cu–Al–Ni single crystal, Chu and James [9]
observed laminated twinned microstructures forming in the martensitic phase. Different
regions were occupied by collections of parallel twin layers. These bands taper down to
needlelike tips, sometimes in the interior, but usually when they encounter the boundary
of a differently oriented laminate. Evolution of this microstructure under load changes is
complex. It involves largely longitudinal growth of needles, combined with suddensplitting
of needle tips, that frequently leads to complete separation of a twin band into finer needles
[1, 9] and results in overall microstructure refinement.

The stored-energy function for such a solid can be modeled as a nonconvex multiwell
function. Each well corresponds to a preferred deformation state associated with a specific
phase of the material. Various studies of static microstructural morphology focus on the
variational problem of global minimization of the total energy functional (e.g., [6, 18, 24]).
They predict energy-minimizing configurations that typically involve microstructures with
fine-scale mixtures of two or more phases. These capture many observed features of mi-
crostructure morphology in static situations. On the other hand, time-dependent behavior
under applied loads cannot be fully understood by energy minimization, as it is not ener-
getically conservative and involves inertia effects. In addition, local energy minima, which
may be physically relevant [1], cannot be identified in this fashion.

In order to understand evolving phase transitions, a number of models for continuum
dynamics of transforming materials were developed. They all share the basic balance laws
of continuum mechanics as a starting point. These conservation laws are of mixed type;
that is, the underlying partial differential equations change from hyperbolic to elliptic,
depending on local properties of the solution. This is due to nonconvexity of the stored-
energy function. Traveling discontinuities arise naturally in this setting and are governed by
Rankine–Hugoniot jump conditions. They are calledshockswhen they separate states in the
same phase orphase boundarieswhen the states on either side are in different phases. Both
kinds give rise to dissipation when in motion. Dynamic problems involving phase boundaries
suffer from a massive loss of uniqueness of solutions: in contrast to shocks, the propagation
speed of these fronts is not completely determined by momentum balance (see, e.g., [17].)
The imposition of the second law of thermodynamics (Clausius–Duhem inequality) fails to
select a unique solution in general, although it rejects some that are physically unacceptable.
As a result, an additional constitutive criterion is needed for the determination of interface
dynamics. The following approaches to that effect have been proposed:

Various ways of regularization of the underlying PDEs augment the constitutive law by
including additional effects, such asviscosityandhigher-order gradients. In these models,
a sharp interface is replaced by a transition layer with internal structure (e.g., [4, 5, 11, 16,
31, 32]).

Alternatively,phase-field modelsintroduce an additional field variable—the order para-
meter—that describes the location and structure of the phase-transition layer. This new
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variable satisfies an equation of Ginzburg–Landau type involving a two-well potential
among other terms. This is coupled to the momentum-balance equation (see, for instance,
[7, 13]).

Finally, in thesharp-interface theory, interfaces are treated as discontinuity surfaces of
zero thickness. Additional constitutive information is prescribed for them. In the simplest
such theory, the energy dissipation is found to equal the product of the normal interface
velocity and thedriving traction. The latter is determined by the local states on either side
of the interface. The model introduces a constitutivekinetic relationthat determines the
velocity as a function of the driving traction (and possibly of other variables) [2, 3, 12, 21,
28, 33, 34]. More complex theories prescribe, in addition, interfacial stress and energy [15].

It is worth noting that diffuse-interface theories of the first two kinds select aspecific
kinetic relation for the sharp-interface model that they approach in a suitable asymptotic
limit [4, 13]. For one-dimensional elastic bars, Abeyaratne and Knowles [3] establish well-
posedness of the Riemann problem when a kinetic relation is specified; anucleation criterion
is also prescribed and determines the onset of phase change. More general initial data are
treated by LeFloch [21].

For definiteness, we focus on a two-dimensional, sharp-interface model for dynamic
twinning processes in body-centered cubic (anisotropic) crystals. In Section 1 we review
the dynamic field equations and jump conditions. Section 2 describes specific constitutive
choices. Generalizing the approach of Abeyaratne and Knowles [3], we adopt a kinetic re-
lation for the twin interfaces that takesinterfacial orientationinto account. Thisanisotropic
kinetic relation determines the normal interface velocity at each point as a specific function
of the driving traction and the interface unit normal. A more detailed treatment, as well as
analytical solutions for specific simple problems, may be found in [26, 27] for the case of
statics and in [28, 34] for the dynamic case.

The development of computational algorithms for evolving interfaces poses an important
challenge. Standard shock-capturing schemes and finite-element methods cannot be applied
directly to the sharp-interface model. For classical fluid dynamics problems, it is known
that difference schemes consistent with the conservation form of the equations converge to
weak (discontinuous) solutions of the PDEs. This result is not pertinent for phase-transition
problems, due to the indeterminacy of phase-boundary motion. Phase interfaces turn out to
be very sensitive to numerical dissipation, regularization, and mesh refinement.

The challenge is therefore to design numerical schemes that are consistent with a given,
independently assigned interfacial kinetic relation. This should be done in a way that ensures
convergence of the numerical solution to that of the sharp-interface problem as the mesh
size approaches zero. The interface should be driven by the given kinetic relation rather
than by artificial numerical dissipation.

A numerical algorithm that meets these requirements was proposed by Zhonget al.
[37]. Therein phase boundaries were tracked and discontinuities captured by a high-order
Godunov-type scheme. This method is quite efficient in one-dimensional problems with
a limited number of interfaces. For higher-dimensional problems, the front-tracking tech-
niques developed for computational fluid dynamics by Glimmet al. [14], and also by
LeVeque and Shyue [22], could be adapted in principle. However, tracking interfaces with
complex geometry in higher dimensions leads to considerable numerical difficulty. This
problem is avoided by the method we propose below.

The level-set formulationfor evolving curves or surfaces was introduced by Osher
and Sethian [25] in a computational method for curvature-driven interfaces. The main
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advantage of this approach is that it can handle singularity formation (corners or cusps),
self-intersection, topological changes, and the formation of complex interface geometry
with no additional computational complexity. Such phenomena are typically encountered
in twinned microstructure evolution.

The evolution of interfaces driven solely by curvature is independent of processes taking
place elsewhere in the bulk. Recently, the level-set approach was extended to situations
where bulk processes are coupled to the interface in some way. For instance, the interface
between two distinct Newtonian fluids interacts with the Navier–Stokes bulk flow through
convection and surface tension in studies by Sussmanet al. [30] and Changet al. [8]. The
twinning problem studied in this paper involves interfacial coupling through kinetics and
momentum balance to an elastodynamic process in the bulk material.

In Section 3, we develop an alternative level-set formulation of the twinning problem by
introducing an additionallevel-set functionϕ. The interface is viewed as the zero level set of
ϕ. In order to avoid discontinuities in computation, the interface is replaced by a transition
layer containing all points where|ϕ|<ε. Hereε is a small regularization parameter that
controls interface thickness. Outside this layer, the field equations of the sharp-interface
model are maintained, while within it, the stored-energy function undergoes a smooth
transition from a low-strain branch to a high-strain branch. The regularized driving traction,
now defined on the entire domain, is obtained from a dissipation-rate calculation analogous
to the one for sharp interfaces. The level-set functionϕ evolves according to a Hamilton–
Jacobi equation of the general formϕt −V |∇ϕ| =0. HereV , the normal velocity of level
sets ofϕ, is delivered by the kinetic relation. This allows us to arbitrarily select any kinetic
relation from the sharp-interface model. In contrast, in theories of the viscosity–capillarity
type, the regularization enforces a particular form of the kinetics that cannot be altered. A
specific model is described in detail in Section 4.

To some extent, our formulation is analogous to the phase-field models constructed by
Fried and Gurtin [13]. The role played by the level-set function is similar to that of an order
parameter. However, our approach is an attempt to mimic the sharp-interface model, without
introducing additional physics (to the extent allowed by regularization). In particular, we
do not include explicit interfacial and exchange energies as it is done in [13].

A finite-difference discretization of the level-set formulation is presented in Section 5.
Section 6 describes the results of a number of simulations with emphasis on morphological
evolution of the twin interface. Various interesting phenomena are observed. These include
needle and cusp formation from an initially smooth interface, spontaneous tip splitting after
twin needles reach the boundary, and topological changes where a twin zone separates
into two disjoint regions. All of these phenomena illustrate an important mechanism for
microstructure evolution and refinement; they bear a strong resemblance to the experimental
observations of [1, 9].

1. SHARP-INTERFACE THEORY

As shown in [27, 34] many aspects of twinning deformations in body-centered cubic
crystals can be described in the setting of anti-plane shear, which we employ here. A dis-
cussion of dynamic anti-plane shear can be found in [28]. We adopt a two-dimensional
description. Boldface letters denote vectors inR2. Consider a body which occupies a cylin-
drical region with open-bounded cross sectionÄ⊂R2. Anti-plane shearmotions (time-
dependent deformations) are described by the scalarout-of-plane displacementfield u(x, t)
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for x= (x, y)∈Ä, t ≥ 0; its physical meaning is given in [27, 28]. The displacementu is
assumed continuous and piecewise smooth. Theshear-strain vector

γ = ∇u = (ux, uy) (1.1)

and the particle velocityut suffer jump discontinuities across certaininterfaces, that is,
time-dependent curves0t ⊂Ä.

The global, or weak, form oflinear momentum balanceinvolves the shear-stress vectorσ,
the accelerationutt , and the constant mass densityρ >0. It requires that for any subregion
P⊂Ä, ∫

∂P
σ · n ds=

∫
P
ρutt d A. (1.2)

The constitutive relation of a hyperelastic material supplies the stress vector as the gradient
of thestored-energy function W(γ):

σ = ∂W

∂γ
. (1.3)

The essential ingredient of most models of phase transformations and twinning is a
nonconvexW with multiple potential wells. For the simplest description of twinning [26–28]
it suffices to viewW as a two-well potential

W(γ) ≥ W(0) = W(ξ) = 0 for all γ ∈ R2, (1.4)

with global minima (wells) atγ= 0andξ, whereξ= const. is the twinning shear vector. We
assume that there are twodisjoint regions of strainSi , i = 0, 1, whereW is strictly convex,
with 0∈ S0 andξ ∈ S1. We refer toS0 andS1 as thelow-strain phaseandhigh-strain phase,
respectively. Convexity fails for strains outsideSi . For simplicity we set

W(γ) =
{

W0(γ) for γ ∈ S0,

W1(γ) for γ ∈ S1,
(1.5)

whereW0 and W1 are globally defined strictly convex functions achieving their global
minimum at0∈ S0 andξ ∈ S1, respectively. The details of these functions embody crys-
tallographic and other characteristics of the material which are discussed in detail in [27].
Stability considerations rule out strains whereW is nonconvex as physically unattainable.
This means that at each instant the domain is separated into two time-dependent subsets
Ä±t , such that strains are in the low-strain phaseS0 inÄ−t and in the high-strain phaseS1 in
Ä+t . In particular,W=W0 in Ä−t , while W=W1 in Ä+t .

The interfaceor twin boundary0t =Ä+t ∩Ä−t consists of piecewise-smooth curves that
separate the part of the body that is in the low-strain phase from that in the high-strain phase.
The unit normal to0t may suffer discontinuities at isolated points; this allows for needlelike
boundaries observed in twinning [9, 27]. Strain and velocity discontinuities occur across0t ,
while |∇u| ∈ S0 ∪ S1 onÄ−0t . In general,0t may evolve and change shape. The motion
of interfaces is determined by specifying the (scalar)normal velocity V=V(x, t) at each
pointx of 0t and timet .
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The jumps in strain and velocity across0t are restricted by the continuity ofu to obey
the jump conditions [2, 28]

v∇ub · t = 0, (1.6)

vut b+Vv∇ub · n = 0. (1.7)

Here vψb=ψ+ −ψ− is the jump of any fieldψ across0t ; the+ and− superscripts indicate
limits as0t is approached fromÄ±t ; n andt are the unit normal and tangent to0t , respectively,
with n pointing intoÄ−. At points whereu is smooth one may employ a localization
argument to reduce the global momentum-balance law (1.2) to the equation of motion

∇ · σ = ρutt onÄ− 0t . (1.8)

At points on the interface0t localization of (1.2) yields a momentum jump condition [2, 28]

vσb · n+ Vρvut b = 0 on0t . (1.9)

Apart from the interface0t , discontinuities may also occur within each of the regionsÄ±.
These areshock wavesand they are subject to the above jump conditions (1.6), (1.7), and
(1.9) as well. However, they differ from interfaces; strains on either side of a shock wave
are in the same phase.

The motion of shock waves and interfaces is accompanied by energy dissipation. The
dissipation rate1(t) is the excess of the rate of external work over the rate of change of
stored elastic and kinetic energy; it is required to be nonnegative by virtue of a suitable
version of the second law of thermodynamics [2]:

1(t) =
∫
∂Ä

utσ · n ds− d

dt

∫
Ä

(
W + 1

2
ρu2

t

)
d A≥ 0. (1.10)

Abeyaratne and Knowles [2] show that

1(t) =
∫
0t

f V ds, (1.11)

where f is called thedriving tractionacting on the moving interface0t andV is the normal
velocity of0t . In the present setting the driving traction takes the form [28]

f = −vWb+ 1

2
v∇ub · (σ+ + σ−) on0t . (1.12)

It follows from the localization of (1.11) that the following dissipation inequality must hold,

f V ≥ 0 on0t . (1.13)

In one-dimensional problems involving a single material phase—hence only shock
waves—the field equations and jump conditions analogous to the above suffice for unique-
ness of solutions to suitable initial-boundary-value problems, provided the dissipation
inequality (1.13) is enforced. In contrast, the presence of interfaces separating different
material phases results in a massive loss of uniqueness [17]. It is by now well understood



308 HOU, ROSAKIS, AND LEFLOCH

(e.g., [3, 21]) that additional constitutive information is needed in order to characterize
the evolution of interfaces. In one dimension, this may take the form of akinetic relation,
V = g( f ), between the rate of phase transformation (speed of the interfaceV) and the driv-
ing traction f . Abeyaratne and Knowles [2, 3] show that such a criterion selects a unique
solution to the Riemann problem. Tsai [34] and Rosakis and Tsai [28] generalize this ap-
proach to possibly curved twin boundaries in two dimensions. Following those studies, we
postulate that there exists akinetic relation, which determines the normal velocityV at each
point of0t in terms of the local driving tractionf and—in addition—the unit normaln to
the interface0t at that point. Specifically, we postulate

V = g( f, n) on0t , (1.14)

whereg is the kinetic response functioncharacteristic of the material. The explicit de-
pendence on the local boundary orientation through the normaln takes into account the
anisotropy of the material. The kinetic response functiong is required to satisfy

f g( f, n) ≥ 0 (1.15)

for all values off and all unit vectorsn, so that it is consistent with the dissipation inequality
(1.13).

2. A SPECIFIC MODEL FOR TWINNING

We adopt a constitutive model (Rosakis and Tsai [28]; Tsai [34]) originally developed to
describe twinning deformations in body-centered cubic crystals. For simplicity the stored-
energy function of each phase in (1.5) is chosen to be quadratic:

W0(γ) = µ

2
|γ|2, W1(γ) = µ

2
|γ − ξ|2. (2.1)

The constantµ>0 is the shear modulus. For the constitutive law specified above, the
stress-strain relation is found from (1.3) and (2.1). It islinear in each phase:

σ(γ) =
{
σ0(γ) = µγ onÄ−t ,

σ1(γ) = µ(γ − ξ) onÄ+t .
(2.2)

The equation of motion (1.8) then reduces to the wave equation

1u = 1

c2
utt onÄ− 0t , (2.3)

valid away from the interface. The constantc=√µ/ρ is theshear wave speed. For the
special material at hand there are two kinds of traveling discontinuities. Forshock waves
the strains on either side of the discontinuity belong to the same phase. It can be shown
from the jump conditions (1.6), (1.7), (1.9) that the normal velocityV must equal the
shear wave speedc. Thus shock waves reduce to ordinary elastic shear waves for this
special model, as a consequence of the linearity of the stress–strain relation in each phase.
Another possibility is that the strains on either side of0t belong to different phases. Then
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the jump conditions (1.6), (1.7), (1.9) dictate thatV < c. The jump conditions now reduce
to [28]

v∇ub = (ξ · n)n
1− V2/c2

on0t , (2.4)

determining the strain jump across0t in terms of the normal velocityV and the normal
n. Such a0t is called a subsonictwin interface. The linearity of the stress response inside
each phase dictates thatf = 0; hence elastic shear waves are dissipation free. In contrast,
the driving traction on twin interfaces does not vanish in general; one finds from (1.12) and
(2.2)

f = 1

2
ξ · [σ1(γ+)+ σ0(γ−)] = µ

2
ξ · (∇u+ + ∇u− − ξ) on0t . (2.5)

A specific form of kinetic relation was considered in [28]. For simplicity letξ= (0, ξ).
Then, lettingn= (n1, n2), choose in (1.14)

V = g( f, n) = M f |n1|, (2.6)

where the constantM > 0 is a mobility coefficient. The motivation for this special type
of anisotropic orientation dependence is discussed in detail in [28, 34]. It arises from a
dislocation model of the interface. It is to be compared with the more common isotropic
kinetic relationV =M f , which does not depend on interfacial orientation. The latter gives
rise to interface morphologies that are not observed experimentally.

Thesharp-interface dynamic problemconsists of seeking a solutionu of (2.3) subject to
the jump condition (2.4) on the moving curve0t . The evolution of0t is to be determined
from a kinetic relation (1.14), such as the specific form (2.6), withf supplied by (2.5).
Initial conditions involve specification of

u(x, 0) = u0(x); ut (x, 0) = v0(x) for x ∈ Ä; 0t=0 = 00; (2.7)

here00 is the initial interface. Boundary conditions typically involve specification of

u = û on ∂1Ä, σ · n = τ̂ on ∂2Ä, (2.8)

where∂1Ä and∂2Ä are complementary subsets of∂Ä. Theequilibrium problemwith u
and0t =0 both time independent is studied in [26, 27]. For stability reasons, an additional
restriction is imposed: the strains in either phase are confined to neighborhoods of the
minima ofW (wells), in order to avoid regimes where theW is nonconvex. It is found that
the configuration of0 is severely restricted by this requirement. In particular, the interface
normaln is confined to be close to the direction of the twinning shear vectorξ, while the
interface itself cannot have corners but may have cusps. The only equilibria with zero energy
are such that0 is a collection of parallel straight lines normal toξ, so that the high- and low-
strain regions are parallel layers. The strain alternates from∇u= 0 to ∇u= ξ in alternate
layers, so thatu is piecewise linear. This layered microstructure is observed experimentally
[9]. On the other hand, if0 is a bounded closed curve, then it must have the shape of a
lamellaor flat needle normal toξ and must terminate in cusps. Similar restrictions on the
shape of evolving interfaces arise from preliminary dynamic studies [28, 34] where the
needlelike cusped morphology is also found to be possible.



310 HOU, ROSAKIS, AND LEFLOCH

3. REGULARIZATION: THE LEVEL-SET FORMULATION

With a view toward numerical computation, we construct an alternative regularized ver-
sion of the sharp-interface theory just described. Our approach replaces the interface0t with
a smooth transition layer of specified thickness, sayε. Outside this layer the field equa-
tions of the sharp-interface model are maintained, while within the layer the stored-energy
functionW undergoes a smooth transition from the low-strain branchW0 to the high-strain
branchW1; see (1.5). Special emphasis is placed on the kinetics of the layer. We obtain
regularized analogues of the driving tractionf and interface velocity and relate them with
a kinetic relation formally identical to the one specified in the sharp-interface theory. We
try to avoid introducing additional physics through the regularization but instead focus on
remaining as faithful to the sharp-interface model as possible.

We introduce a new field, called thelevel-set functionϕ(x, t), with the property that

ϕ > 0 onÄ+t ; ϕ < 0 onÄ−t ; 0t = {x∈Ä :ϕ(x, t) = 0} (3.1)

so that the interface0t is the zero level set ofϕ. For example,ϕ may be chosen as signed
distance from0t , namely

ϕ(x, t) = ±dist(0t , x), x∈Ä±t . (3.2)

The level setsϕ= const. are moving curves whose normal velocityV(x, t) obeys

ϕt − V |∇ϕ| = 0 onÄ. (3.3)

Note that this definesV globally onÄ; its values on0t give the interface velocity. The
sign ofV in (3.3) is chosen so thatV is positive whenÄ+t grows at the expense ofÄ−t . We
turn next to the regularization of the stored-energy function. For 0≤ h≤ 1, letŴ(γ, h) be
a smooth function that interpolates between the two branches of the stored-energy function
in (1.5), so that

Ŵ(γ, 0) = W0(γ), Ŵ(γ, 1) = W1(γ). (3.4)

Let H be the Heaviside step function, withH(z)= 1 for z> 0 and H(z)= 0 for z< 0.
Recalling (3.1) we can writeŴ(γ, H(ϕ)) for the stored energy of the sharp-interface
model, noting that it switches from the low-strain branchW0 to the high-strain branchW1

across the interface0t . For eachε >0 let Hε be aregularized Heaviside function; we require
Hε to be smooth and monotonically nondecreasing with

H ′ε(z) > 0 for |z| < ε; Hε(z) =
{

0 for z< −ε,
1 for z> ε.

(3.5)

The regularized Dirac delta function is the derivative

δε(z) = H ′ε(z). (3.6)

The first step of the regularization procedure is to replaceW wherever it occurs with the
regularized stored-energy function

Wε(γ, ϕ) = Ŵ(γ, Hε(ϕ)). (3.7)
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In effect this replaces the interfacial discontinuity at0t with a transition layer

0εt = {x∈Ä : |ϕ(x, t)|<ε}, (3.8)

whose width is approximately 2ε. Theregularized stressis defined in direct analogy with
(1.3):

σε(γ, ϕ) = ∂

∂γ
Wε(γ, ϕ). (3.9)

To illustrate this idea we consider two examples of regularized energies:

Model I. One possibility is a linear interpolation between the low- and high-strain
branchesW0 andW1, so that (3.4) is satisfied:

Ŵ(γ, h) = W0(γ)+ h[W1(γ)−W0(γ)].

In view of (3.7) the regularized stored energy becomes

Wε(γ, ϕ) = W0(γ)+ Hε(ϕ)[W1(γ)−W0(γ)]. (3.10)

Model II. If the low- and high-strain branchesW0 andW1 are related by a translation,
as in the special model (2.1), one may alternatively setŴ(γ, h)=W0(γ− hξ), so that in
(3.7) we obtain

Wε(γ, ϕ) = W0(γ − Hε(ϕ)ξ). (3.11)

Similar constructions were employed by Fried and Gurtin [13].
Next, we enforce the global forms of momentum balance (1.2) and the dissipation in-

equality (1.10), but withW andσ replaced with their regularized counterpartsWε andσε.
Momentum balance reduces to the local equation of motion (1.8) in terms ofσε:

∇ · σε(∇u, ϕ) = ρutt onÄ. (3.12)

A simple calculation utilizing (3.7), (3.8), (3.12) and the divergence theorem shows that the
analogue of the dissipation rate in (1.10) satisfies

1ε(t) =
∫
∂Ä

utσε · n ds− d

dt

∫
Ä

(
Wε + 1

2
ρu2

t

)
d A= −

∫
Ä

∂Wε

∂ϕ
ϕt d A. (3.13)

If we now define theregularized driving tractionas

fε = −∂Ŵ

∂h
(γ, Hε(ϕ)) (3.14)

and employ (3.3), (3.6), and (3.7), we conclude from (3.13) that

1ε(t) =
∫
Ä

fεVδε(ϕ)|∇ϕ| d A. (3.15)
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The normal velocityV of level sets enters this expression after use of (3.3). Note that
δε(ϕ)—hence the integrand in (3.15)—vanishes outside the transition layer0εt in view of
(3.6), (3.8). The regularized driving tractionfε is a globally defined field, whereasf in the
sharp-interface theory is only defined on the interface0t . Its definition (3.14) is motivated
by a comparison of (3.15) with (1.11). Indeed, ifϕ vanishes on0t andθ is any smooth field,
one can adopt an argument of Changet al. [8] to show that∫

Ä

θδ(ϕ)|∇ϕ| d A=
∫
0t

θ ds

in terms of the Dirac delta distribution. This shows that (3.15) is a regularized analogue of
(1.11).

It remains to determine the evolution of the interface0t . Here we adopt the kinetic relation
of the sharp-interface theory (1.14). Note that the unit normal vector to level sets ofϕ—such
as0t—is given by

n = ∇ϕ|∇ϕ| onÄ. (3.16)

The kinetic relation is enforced in terms of the regularized driving traction of (3.14) in a
fashion formally identical to (1.14):

V = g

(
fε,
∇ϕ
|∇ϕ|

)
.

Substituting this forV into (3.3) yields an evolution equation for the level-set functionϕ,
after observing thatfε in (3.14) andV are now fields defined throughoutÄ:

ϕt − g

(
fε,
∇ϕ
|∇ϕ|

)
|∇ϕ| = 0 onÄ. (3.17)

Equations (3.12) and (3.17) comprise a system of two coupled partial differential equa-
tions foru andϕ. Given the regularized stored-energy functionWε in (3.7) and the kinetic
relation g in (1.14), one determinesσε and fε from (3.9) and (3.14), respectively. The
regularized problemconsists of solving (3.12) and (3.17) for the two unknown functionsu
andϕ, subject to the initial conditions

u(x, 0) = u0(x), ut (x, 0) = v0(x), ϕ(x, 0) = ϕ0(x) for x∈Ä, (3.18)

and the boundary condition

u = û on ∂Ä. (3.19)

We chooseϕ0 as signed distance from the initial interface00. For simplicity we only consider
Dirichlet boundary conditions foru. The issue of boundary conditions forϕ is considered
in Section 5. A substantial advantage of the above construction is the elimination of all
jump conditions by the regularization procedure. Once the regularized problem is solved,
the evolving interface0t is easily determined as the zero-level set ofϕ(x, t); see (3.1).
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4. THE REGULARIZED PROBLEM FOR A SPECIAL MODEL

We restrict attention to the special constitutive law (2.1) and the kinetic relation (2.6).
For Model I, the regularized stored energy (3.10) now takes the form

Wε(γ, ϕ) = µ

2

[|γ|2+ Hε(ϕ)(|ξ|2− 2ξ · γ)]. (4.1)

For the alternative Model II, (3.11) yields

Wε(γ, ϕ) = µ

2
|γ − Hε(ϕ)ξ|2. (4.2)

The regularized stress (3.9) is the same for both models:

σε(γ, ϕ) = µ[γ − Hε(ϕ)ξ]. (4.3)

On the other hand, (3.14) in conjunction with (4.1), (4.2) results in different versions of the
regularized driving traction:

Model I: fε(γ, ϕ) = µξ ·
(
γ − 1

2
ξ

)
,

(4.4)
Model II: fε(γ, ϕ) = µξ · (γ − Hε(ϕ)ξ).

Observe that the values of the two versions offε agree on the interface0t , whereϕ = 0.
Noting thatHε(0)= 1/2 and using (2.2), we find for both models

fε(γ, 0) = 1

2
ξ · [σ1(γ)+ σ0(γ)]. (4.5)

Compare this with (2.5). In both the sharp-inerface theory and the regularized model, the
driving traction at the interface is proportional to the average of the stresses correspond-
ing to the two phases. Choosing the coordinate system so thatξ= (0, ξ), let x= (x, y),
n= (n1, n2). We consider a slight generalization of the kinetic relation (2.6), namely, a
combination of an isotropic relationV =M1 f and the anisotropic version (2.6). The linear
dependence onf is chosen for simplicity. Given two constantsMi ≥ 0, we set

V = g( f, n) = M1 f + M2|n1| f. (4.6)

Substitution of (4.3) into (3.12) furnishes the momentum-balance equation:

1u− 1

c2
utt = ξδε(ϕ)ϕy onÄ. (4.7)

In the evolution equation (3.17) forϕ, we employ the kinetic relation (4.6) withf andn
replaced with their regular counterparts (4.4) and (3.16), respectively. The special version
of the evolution equation (3.17) so obtained reads

Model I: ϕt − ξµ(uy − ξ/2)(M1|∇ϕ| + M2|ϕx|) = 0 (4.8)

and alternatively

Model II: ϕt − ξµ(uy − ξHε(ϕ))(M1|∇ϕ| + M2|ϕx|) = 0. (4.9)

We impose the Dirichlet boundary condition

u = ky on ∂Ä, (4.10)
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where the constant 0≤ k≤ ξ/2 is theapplied shear. The explicit appearance of the consti-
tutive parametersµ, c, andξ may be avoided by introducing the change of variables

t̂ = ct, û(x, y, t̂) = 1

ξ
(u(x, y, t̂/c)− ky), ϕ̂(x, y, t̂) = ϕ(x, y, t̂/c). (4.11)

Note thatû satisfieŝu= 0 on∂Ä. Define the normalized parameters

k̂ = k/ξ, M̂i = ξ2µMi /c. (4.12)

In terms of these new variables (after dropping hat overscripts) we obtain normalized
versions of Eqs. (4.7) and (4.8) for Model I:

1u− utt = δε(ϕ)ϕy onÄ (4.13)

and

ϕt − (uy + k− 1/2)(M1|∇ϕ| + M2|ϕx|) = 0 onÄ. (4.14)

The system consisting of (4.13) and (4.14) is to be studied numerically according to a
procedure laid out in the rest of the paper.

5. FINITE-DIFFERENCE DISCRETIZATION

We describe finite-difference discretizations for the regularized model (level-set formula-
tion) developed in the previous section. First, we specify regularized versions of the singular
Dirac delta functionδ and the discontinuous Heaviside functionH . As in [8], we define the
regularized delta functionδε as

δε(z) =
{

1
2(1+ cos(πz/ε))/ε for |z| < ε,

0 for |z| ≥ ε,

and a corresponding regularized Heaviside functionHε as

Hε(z) =


0 for z< −ε
(z+ ε)/(2ε)+ sin(πz/ε)/(2π) for |z| ≤ ε,
1 for z> ε,

so that the relationH ′ε(x)= δε(x) holds.
An N× N grid (with spacingh= 1/N) is laid onÄ. Denote byun

i, j the approximation of
u(xi , yj , tn), wherexi = ih, yj = jh, tn= n1t , and1t is the time step; herei, j = 1, . . . , N,
while n is a nonnegative integer.ϕn

i, j is defined similarly. Herei, j = 1, . . . , N, while n is
a nonnegative integer. We use a second-order, centered-difference discretization in space
and time for the normalized momentum-balance equation (4.13). Introduce the difference
operators

Dx
0 fi, j = ( fi+1, j − fi−1, j )/2h (centered),

Dx
− fi, j = ( fi, j − fi−1, j )/h (backward),

Dx
+ fi, j = ( fi+1, j − fi, j )/h (forward).
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The operatorsDy
0, Dy

−, andDy
+ are defined similarly. The centered-difference approximation

to the Laplacian operator1 then takes the form1h= Dx
−Dx
+ + Dy

−Dy
+. The discretized

version of (4.13) thus readsDt
−Dt
+un

i, j =1hun
i, j − δε(ϕn

i, j )D
y
0un

i, j , or more specifically,

un+1
i, j − 2un

i, j + un−1
i, j

1t2
= un

i+1, j + un
i−1, j − 4un

i, j + un
i, j+1+ un

i, j−1

h2
− δε

(
ϕn

i, j

)ϕn
i, j+1− ϕn

i, j−1

2h
.

On the other hand, we employ a second-order ENO scheme to discretize Eq. (4.14) describ-
ing the evolution of the level-set functionϕ. Since we are interested in accurately computing
the convection of interface position, we use the nonconservative form of the ENO scheme
[8]. Define a minmod function as

minmod(u, v) =
{

sgn(u)min(|u|, |v|) if uv > 0,

0 otherwise.

Here sgn stands for the signum function. Equation (4.14) satisfied by the level-set functionϕ

is a specialized version of the Hamilton–Jacobi equationϕt −V |∇ϕ| =0 (see (3.3), (3.17),
(4.6)). Suppose momentarily that the normal velocityV =V(x, t) of the level sets ofϕ is
known. The second-order ENO discretization of the Hamilton–Jacobi equation is given by

ϕn+1
i, j =

{
ϕn

i, j −1tVn
i, j P+ for Vn

i, j > 0,

ϕn
i, j −1tVn

i, j P− for Vn
i, j ≤ 0,

where

P+ =
√
(max(px−, 0)2+min(px+, 0)2)+ (max(py

−, 0)2+min(py
+, 0)2),

P− =
√
(min(px−, 0)2+max(px+, 0)2)+ (min(py

−, 0)2+max(py
+, 0)2),

px
− = Dx

−ϕ
n
i, j + 0.5h minmod

(
Dx
−Dx
+ϕ

n
i, j , Dx

−Dx
+ϕ

n
i−1, j

)
,

px
+ = Dx

−ϕ
n
i+1, j − 0.5h minmod

(
Dx
−Dx
+ϕ

n
i+1, j , Dx

−Dx
+ϕ

n
i, j

)
,

py
− = Dy

−ϕ
n
i, j + 0.5h minmod

(
Dy
−Dy
+ϕ

n
i, j , Dy

−Dy
+ϕ

n
i, j−1

)
,

py
+ = Dy

−ϕ
n
i, j+1− 0.5h minmod

(
Dy
−Dy
+ϕ

n
i, j+1, Dy

−Dy
+ϕ

n
i, j

)
.

The specific version of (4.14) also involves a termV |ϕx|, whose second-order ENO dis-
cretization is obtained by removing the terms corresponding toϕy above.

Reinitialization and Boundary Conditions for the Level-Set Function

In general, even if we prescribe the initial value of the level-set functionϕ to equal signed
distance from the interface, it will not remain a distance function at later times. For large-
time computations it is desirable to keepϕ as a distance function. This will ensure that the
interface has a finite thickness of orderε for all time. In [30], an iterative procedure was
proposed toreinitialize ϕ at each time step, so that it remains a signed distance function
from the evolving interface. Specifically, given a level-set functionϕ∗(x)=ϕ(x, t∗) at a
fixed timet∗, one computes the solution of the initial-value problem

ϕt = sgn(ϕ∗)(1− |∇ϕ|),
(5.1)

ϕ(x, 0) = ϕ∗(x) onÄ.
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The solution converges rapidly in time to a function that has the same sign and the same
zero level set asϕ∗, and also satisfies|∇ϕ| =1, so that it equals signed distance from the
interface. Afterϕ evolves at each time step according to (4.14), it is reinitialized by solving
(5.1) for two time steps; this suffices due to rapid convergence. This procedure is crucial for
our formulation, since the extension of the normal velocityV in our case is not continuous
across the phase boundary in the sharp-interface (ε→ 0) limit. This makes computations
more difficult than in the fluid interface problem considered in [8, 30], where the normal
velocity is continuous across the interface.

We consider next the issue of boundary conditions for the level-set function at the
boundary∂Ä. In our calculations we use a one-sided difference approximation forϕx

andϕy at the boundary. For example, at the sidesx= 0, 1 we approximateϕx(0, yj , tn) by
Dx
+ϕ

n
0, j = (ϕn

1, j −ϕn
0, j )/h andϕx(1, yj , tn) by Dx

−ϕ
n
N, j = (ϕn

N, j −ϕn
N−1, j )/h.

When the normal velocityV is nonnegative (the interface moves toward∂Ä), this pro-
vides an upwind approximation of the Hamilton–Jacobi equation and results in a stable
discretization. However, we find in our computations that the interface splits at the bound-
ary and comes back into the domain, so that the normal velocity becomes negative over
certain interface portions. Then the one-sided boundary condition we use is a downwind
approximation and causes numerical instability. It is our reinitialization process that stabi-
lizes the scheme. On the other hand, one must provide some artificial boundary condition
for ϕ in order to continue the computation after the interface splits. One should note that
the level-set function is physically relevant only to the extent that it describes the interface
position, whereϕ= 0. Hence, the manner in which we specify boundary conditions for
ϕ does not change the physics of the problem, as long as the interface does not intersect
the domain boundary. In the problem examined here, the high-strain zone bounded by the
interface is prohibited from extending to the boundary because of the boundary conditions
for u, which force the neighborhood of the boundary portionsx= 0, 1 to be in the low-strain
phase. Instead, the interface may taper into tips that touch∂Ä only at a finite number of
points. The interface still satisfies the evolution equations in the interior and the boundary
condition for the displacementu is strictly enforced. In some sense, our specific numerical
boundary condition and the reinitialization process provide a way to continue the interface
solution after it reaches the domain boundary. The interface chooses to split afterward so
that it can further decrease the total energy. This splitting is observed in experiments (9) and
is consistent with our understanding that solutions that tend to minimize energy develop
fine-scale structures in time.

We only employ Model I in our computations. An additional numerical difficulty arises
in computations with Model II. In particular, the normal velocity of the interface in (4.9)
(Model II) involves the difference of two functionsuy− ξHε(ϕ). In the sharp-interface
theory, both terms represent discontinuous functions across the interface. In the sharp-
interface (ε→ 0) limit, the second term involves a step function, while the discontinuity in
uy is due to the Dirac delta term in the wave equation (4.13) whenε→ 0, or equivalently, to
the jump conditions (2.4). In the regularized model, however, the discretized versions ofuy

andHε(ϕ)may have different structures in the interface layer. In the numerical calculations,
these differences can produce overshoot and undershoot across the interface. This can lead
to orderO(1) errors in interface velocity. On the other hand, the corresponding term in (4.8)
(Model I) readsuy− ξ/2 and involves only one discontinuous termuy. One can show that the
behavior of the termuy in Model I tends to sharpen the interface layer by locally increasing
|∇ϕ|. This tends to improve the determination of the interface position. The reinitialization
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scheme forϕ discussed above serves to maintain the layer thickness to be of orderε for all
time. In Model II, however, the interplay ofuy andHε(ϕ) may tend to flatten the level-set
function at the interface, thereby increasing uncertainty in interface position. Consequently,
Model I is preferable from the computational standpoint and is used throughout.

6. NUMERICAL RESULTS

The problem we consider is the dynamic evolution of atwin nucleus, that is, a small
region in the high-strain phase that is assumed to have already nucleated at the center of the
unit squareÄ= (0, 1)× (0, 1), subject to displacement boundary conditions corresponding
to constant applied shear loading. Specifically we impose the Dirichlet boundary condition
u= ky on∂Ä, where the constant 0≤ k≤ ξ/2 is theapplied shear. In the remainder of the
paper, all quantities stand for their normalized counterparts, defined in (4.11) and (4.12).
The boundary condition reduces to

u = 0 on∂Ä. (6.1)

For convenience, the initial interface (nucleus boundary)00 is chosen to be an ellipse
centered at (0.5, 0) with semimajor axisa= 0.3 and semiminor axisb= 0.15. The initial
valueϕ0 of the level-set function in (3.18) is set to signed distance from00 (positive inside
00). We also let initial velocityv0= 0 and choose the initial displacementu0 as theelastic
equilibrium(time-independent) solution of the momentum-balance equation (4.13), namely

1u0 = δε(ϕ0)
∂ϕ0

∂y
onÄ; u0 = 0 on∂Ä. (6.2)

The initial displacementu0 is plotted in Fig. 1. Observe that it is almost linear inside the
initial ellipse. This is in agreement with a standard result from potential theory that applies
to the sharp-interface version of problem (6.2); see [26].

It turns out that the initial driving traction (4.5) does not vanish. The kinetic relation (4.6)
forces the interface to move; equivalently, the level-set functionϕ changes as dictated by
(4.14). The coupling ofu andϕ in (4.13) and (4.14) drives the subsequent dynamics of the
problem.

All calculations were performed withN= 256,ε= 0.01. We compare various choices
of the mobility coefficientsM1,M2 in the kinetic relation (4.6). An isotropic kinetic re-
lation would haveM1> 0, M2= 0 in (4.6) and (4.14). This seems unreasonable for the
anisotropic twinning problem. The fully anisotropic kinetic relation withM1= 0, M2> 0
can be motivated from a micromechanical model that views the interface as a collection of
twinning dislocations [34]. These dislocations can glide on twinning planes (move along
the x direction), but cannot climb (move along they direction). Thus this kinetic relation
allows motion of the interface in thex direction, but inhibits motion in they direction. We
compare this with isotropic kinetics (M1= 1, M2= 0), but also consider a version that com-
bines a small isotropic term with the anisotropic one (M1= 0.1, M2= 3). We also consider
different levels of loading, controlled by the applied sheark.

Cusp Formation

Our first calculation studies initial interfacial shape evolution for short timest = 0 to
t = 1. We choosek= 0.3,M1= 0,M2= 3 (fully anisotropic kinetics) anda= 0.3, b= 0.15.
In Fig. 2, we plot a sequence of evolving configurations of the interface att = 0, 0.2, 0.5, 1.



318 HOU, ROSAKIS, AND LEFLOCH

FIG. 1. The initial displacementu0 (solution of (6.2)) for an initial ellipse witha= 0.3, b= 0.15, N= 256,
ε= 0.01.

FIG. 2. A sequence of evolving interface configurations att = 0, 0.2, 0.5, 1 for fully anisotropic kinetics with
M1= 0,M2= 3. Herea= 0.3, b= 0.15, k= 0.3.
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The interface grows mainly in the horizontal direction from the initial smooth ellipse. It
quickly develops two sharp tips, which have the appearance ofcuspsand propagate toward
the boundary. The high-strain region develops alamellar, needlelike form that tapers into
cusped tips. This generic form is deduced in analytical solutions of both static [26, 27]
and dynamic [28, 29] versions of the sharp-interface twinning problem. Experimentally
observed twin boundaries are commonly in the form of elongated cusped needles along
specific directions [9]. During growth, the tips are observed to propagate by motion along
the axis of the needle.

Effect of Kinetic Anisotropy

We compare the effect of isotropic versus anisotropic kinetics in Figs. 3a and 3b, respec-
tively. In both cases we impose the same initial conditions witha= 0.2, b= 0.1, k= 0.3.
For the isotropic case we setM1= 1, M2= 0. The growing tips in Fig. 3a remain rounded
and do not assume a cusplike form. In contrast, in Fig. 3b, where a fully anisotropic ki-
netic relation is chosen withM1= 0, M2= 1, the tips immediately become cusped and
maintain their sharpness up to contact with the boundary. We regard this as evidence that
kinetic anisotropy is essential for the appropriate description of interfacial evolution. Inso-
far as we know, the rounded-tip form associated with the isotropic case never seems to be
experimentally observed.

The effect of the loading level (amount of sheark) for anisotropic kinetics (M1= 0,
M2= 1) on subsequent interface evolution was studied fork= 0.2, 0.3, and 0.4. Results are
shown in Figs. 4, 5, and 6, respectively. In all these cases, we observed that once the tip
reaches the boundary∂Ä, it becomes blunted and the cusp develops into a wedge shape.
For low loading,k= 0.2, the tips remain on the boundary (Fig. 4) up to the end of the
calculation.

Tip Splitting

For higher loading (k= 0.3, Fig. 5), atip splittingphenomenon occurs betweent = 1 and
t = 2. In particular, each tip splits suddenly into two tips that remain on the boundary, and
onereentrant tipthat propagates backward toward the center of the region. At this load level
the reentrant tips slow down substantially byt = 8. Tip splitting at obstacles is observed
experimentally in a Cu–Al–Ni single crystal by Chu and James [9]. It is recognized as a
mechanism of lowering the total energy by dividing each needle into thinner, flatter needles.
Models focusing on statics of branched twin microstructures may be found in [19, 20].

For even higher loads (k= 0.4, t = 0.5, 1, . . . ,8, Fig. 6), multiple splitting events are
observed. The first splitting takes place betweent = 0.5 andt = 1. The onset of the second
splitting can be seen att = 1.5, and it is more evident byt = 2. The third splitting occurs
aroundt = 3. There are five reentrant tips on each side that split the original lamella into
six branches; the reentrant tips continue to grow throughout the calculation. However, the
growth becomes quite slow byt = 4. We plot the total kinetic plus elastic energy in Fig. 7.
Use of (4.1) and the change of variables (4.11) yields the following expression for the total
energy (normalized after division byµξ2):

E(t) = 1

2

∫ 1

0

∫ 1

0

{
u2

t + u2
x + [uy + k− Hε(ϕ)]

2+ Hε(ϕ)[1− Hε(ϕ)]
}

dx dy. (6.3)

Sinceut = 0 on the boundary in view of boundary condition (4.10), the first integral in
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FIG. 3. Comparison of isotropic versus anisotropic kinetics. Sequence of interface configurations at
t = 0, 0.2, 0.6, 1 for (a) isotropic kinetics withM1= 1,M2= 0,a= 0.2, b= 0.1, k= 0.3 and (b) fully anisotropic
kinetics withM1= 0,M2= 1,a= 0.2, b= 0.1, k= 0.3.
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FIG. 4. Sequence of interface configurations att = 2, 4, 6, 8 for low load, k= 0.2, and fully anisotropic
kinetics;M1= 0,M2= 1,a= 0.3, b= 0.15.

FIG. 5. Sequence of interface configurations att = 2, 4, 6, 8 for intermediate load,k= 0.3, and fully
anisotropic kinetics;M1= 0,M2= 1,a= 0.3, b= 0.15. Tip splitting has already occurred att = 2.
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FIG. 6. (a) Sequence of interface configurations att = 0.5, 1, 1.5, 2 for high load, k= 0.4, and fully
anisotropic kinetics;M1= 0,M2= 1,a= 0.3, b= 0.15. Observe the multiple splittings. (b) Subsequent evolu-
tion at t = 2.5, 3, 3.5, 4. Parameters are as in (a). (c) Subsequent evolution att = 6.5, 7, 7.5, 8. Parameters are as
in (a).
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FIG. 6—Continued

(1.10) vanishes; as a result the total energy should decrease due to dissipation caused by
interface motion. This is confirmed in Fig. 7. The energy decays very slowly aftert = 4.
It is possible that the solution settles down to a local energy minimum without producing
more fine structures at the interface and possibly without complete separation, although
this is far from certain. Micrographs of twinned microstructures in Cu–Al–Ni [9] show
partially split lamellae with two or three tips; complete separation of layers into two or
more thinner needles by means of tip splitting also occurred in those experiments. Our
model is not intended to capture the complicated behavior of this alloy, nonetheless, the
qualitative agreement is quite interesting.

We plot the position of the leading tip as a function of time in Fig. 8. Before the original
leading tip reaches the boundary, its speed seems to be almost constant in time. Tip speed
has a monotonically increasing dependence on the load level, as expected from the kinetic
relation; it varies between about one-fifth of the shear wave speedc for k= 0.2 and about
one-half fork= 0.4. These values seem quite high; they can be reduced by an order of
magnitude by settingM2= 0.1. We note, however, that tip speeds close to 0.4c have been
reported in experiments by Williams and Reid [36].

For low loading, the tip decelerates at some distance away from the boundary due to
interaction with it. Faster tips during high loading maintain their speed almost up to contact
with the boundary. The tip stops at the physical boundary and stays there for some time.
During this period, the angle of the tip broadens and it becomes somewhat blunted. After a
certain time, the tip splits and propagates inward into the domain. The speed of propagation
of the reentrant tip is no longer uniform after the interface splits. The speed fluctuations
observed in Fig. 8 are due to interaction of the interface with elastic shear waves. The
latter are generated during initial interface growth and undergo multiple reflections from
the boundary. In particular, the sudden initial motion of the interface causes elastic shear
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FIG. 7. Total energy versus time for the simulation of Fig. 6 (k= 0.4,M1= 0,M2= 1,a= 0.3, b= 0.15).

FIG. 8. Position (x-coordinate) versus time of the left leading tip for the simulation of Fig. 6 (k= 0.4,
M1= 0,M2= 1,a= 0.3, b= 0.15).
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waves to emanate from it [3]. Conversely, a shear wave impinging on the interface affects
the speed of the latter by altering the local stress state and hence the driving traction.

Topological Changes

In order to exhibit the complex nature of interface evolution for longer times, we per-
formed a simulation up tot = 100. In this calculation, we start with a small initial ellipse
with semiaxesa= 0.04, b= 0.03. This models the situation where a small twinnucleates
at the origin and grows subsequently. We add a small isotropic term to the usual anisotropic
term in the kinetic relation, by choosingM1= 0.1,M2= 3. The term in (4.14) associated
with M1 allows some mobility in they direction; this is an order of magnitude lower than the
mobility in thex direction associated with the anisotropic coefficientM2. This allows the
interface to decrease the energy somewhat faster than in the caseM1= 0 considered above.
The load level is set tok= 0.3. Results are shown in Fig. 9. Initial evolution up tot = 8 is
qualitatively very similar to the one shown above in Figs. 2 and 5. The nucleus grows into
a flat needle. The only difference is that the initial tips that emerge from the nucleus are
slightly more blunted than the cusped tips of Fig. 2. This is entirely due to theM1 term. By
t = 10 the emerging tips have reached the boundary and split, and two reentrant tips have
moved into the interior. This configuration is almost identical to the one fort = 8 in Fig. 5,
which corresponded to the same load level, but fully anisotropic kinetics and a larger initial
ellipse. Att = 15, each of the four tips remaining on the boundary splits once more into two.
The four new reentrant tips, however, only move into the interior by a limited amount and
almost stop byt = 25. In contrast, the two original reentrant tips continue moving toward
each other at a faster pace. At some time betweent = 25 andt = 30 they actually meet at the
center. They coalesce and atopological changetakes place: the needle separates completely
into two disjoint regions. Each of them has four tips on the boundary and two reentrant tips.
Further evolution is rather slow, especially aftert = 80. The two separate needles move
slowly away from each other in they direction. This is facilitated by the presence of the
small isotropic kinetic term. Configurations att = 95 andt = 100 were virtually indistin-
guishable when laid on top of each other. The final configuration att = 100 consists of two
parallel straight layers, which are split and tapered at the boundary. The distance between
the layers is roughly equal to the distance of each from the top and bottom boundaries.
The total energy is plotted as a function of time in Fig. 10. The energy starts decaying
very slowly byt = 20. However, approximately att = 27, it starts decreasing rapidly again;
this corresponds to the actual instant of topological change (complete separation into two
regions). It is not clear whether the final observed state is close to equilibrium associated
with a local energy minimum. It is conceivable that the remaining reentrant tips might move
toward each other, and a second complete separation might occur eventually. This would
give rise to four disjoint layers. Verification of this would require a very large amount of
computational effort, because of the extremely slow evolution observed at the end of the
present simulation.

Equilibria of the present dynamic problem correspond to local minima of a nonconvex
variational problem. For example, one can letW(∇u)=min{W0(∇u),W1(∇u)}, with W0

andW1 as in (2.1); thusW is a nonconvex two-well function with minima at∇u= (0, 0) and
(0, ξ). One then seeks to minimize the total stored elastic energyE{u}= ∫

Ä
W(∇u) d Aover

a suitable class of functionsu satisfying the boundary condition (6.1). It is well known [10]
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FIG. 9. (a) Sequence of interface configurations starting from a small initial ellipse witha= 0.04, b= 0.03,
with combined kineticsM1= 0.1,M2= 3, at loadk= 0.3. Initial evolution att = 0, 0.25, 0.5, 0.75. (b) Subsequent
evolution att = 5, 10, 15, 20. Parameters are as in (a). (c) Subsequent evolution att = 25, 30, 35, 40. Parameters
are as in (a). A topological change occurs betweent = 25 andt = 30. (d) Long-time evolution att = 50, 60, 70, 80.
Parameters are as in (a).
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FIG. 9—Continued
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FIG. 10. Total energy versus time for the simulation of Fig. 9 (k= 0.3,M1= 0.1,M2= 3,a= 0.04, b= 0.03).

that this problem does not possess a global minimum. This is due to nonconvexity and the
incompatibility of the high-strain branchW1 with the boundary conditions. On the other
hand, there are minimizing sequences of functions{un}, for which the energy tends to its
infimum value of zero asn→∞. A typical term of such a sequence is a collection of
horizontal layers in the high-strain well with∇u= ξ, alternating with layers in the low-
strain well∇u= (0, 0). In particular,un is piecewise linear and hasn horizontal interfaces.
Compatibility with the boundary conditions at the vertical portions of the boundary is
achieved by introducing a transition zone or boundary layer, where values of∇u are not at
the two minima ofW. This zone penalizes the total energy. However, the size of this zone
and thus the total energy approach zero in the limit asn→∞, while the number of layers
grows unbounded. The tapering of needles near the boundary observed in our simulations
occurs precisely in order to accommodate the boundary conditions. The latter force the
values ofuy at the vertical portions of∂Ä to be in the low-strain phase. As a result, a flat
high-strain phase layer cannot extend all the way to the boundary. Instead, it tapers into a
tip and touches∂Ä only at isolated points.

Kohn and Müller [19, 20] consider an alternative model that includessurface energy
at interfaces. They find equilibria where twin layers branch and taper near the interface.
The resulting construction has various similarities with the final configuration encountered
in the above simulation. It is interesting to note that Model I adopted here introduces a
surface energy term as a consequence of regularization, that howevervanishes in the sharp-
interface limitasε→ 0. For Model I, the total energyE(t) in (6.3) admits the decomposition
E(t)= Eb(t)+ Es(t). The bulk (kinetic plus stored elastic) energyEb actually equals the
total energy associated with Model II (integral of (4.2) overÄ). The surface (interfacial)
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energyEs equals the last term in expression (6.3) of the total energy, namely,

Es(t)=
∫
Ä

1

2
Hε(ϕ)[1− Hε(ϕ)] d A. (6.4)

This term depends only on the interface configuration throughϕ and does not involve∇u.
In contrast, the explicit surface energy introduced by Fried and Gurtin [13] depends on
the order parameter gradient (analogous to∇ϕ) and does not vanish in the sharp-interface
limit. The integrand in (6.4) is positive inside the transition layer (where|ϕ|<ε) and
vanishes elsewhere. Recall thatϕ is frequently reinitialized to equal signed distance from
the interface. As a result, we have the estimateEs≈aLε/2, whereL is the total interface
length and the constanta= ∫ 1

−1H1(z)(1−H1(z)) dz≈ 0.2. Hence,Es vanishes in the sharp-
interface limit asε→ 0. In our simulations however,Es typically increases due to interface
growth, whileEb decays due to dissipation. Equilibrium is reached when the competition
of the two prohibits further decrease of the total energyE. In our last simulation (Fig. 9)
with ε= 0.01, att = 100 we haveL ≈ 5 so thatEs≈ 0.005, whileE≈ 0.013 in Fig. 10. A.
further separation of two into four needles would almost doubleEs, making it comparable
to the total energy. As a result, it seems unlikely that any further topological change would
take place. We suspect that the final configuration of Fig. 9 att = 100 is very close to
equilibrium. Further topological change is presumably possible ifε is decreased; however,
that would require a reduction of mesh size from the current value ofh= 1/256. Model II
does not involve surface energy and might allow repeated topological changes were it not
for numerical difficulties associated with interface kinetics discussed previously.

7. CONCLUDING REMARKS

The level-set method presented here is efficient in capturing various aspects of the evo-
lution of twinning. As it does not rely on interface tracking and remeshing, it is well suited
for the study of complex microstructure formation.

In contrast to other ingredients of the constitutive law, the kinetic relation is very difficult
to measure from experiments. The fact that the kinetic relation can be assigned independently
in the current scheme is a strong point of the method; it allows comparison and testing
of various proposed kinetic models. Here, for instance, we demonstrate that orientation
dependence (anisotropy) in the kinetic relation is crucial for prediction of the shape of
twin needles. Various other regularized theories lack this flexibility. Regularization due to
viscosity and higher gradients fixes a particular type of kinetics that cannot be modified.
Generalizations of the kinetics that include, for example, curvature dependence are relatively
easy to implement in the present method.

Our results suggest that the energy functional for the corresponding static problem may
possess multiple local minima, each with a higher number of disjoint layers, but lower
energy. Transition from one such state to another requires an increase in the number of
layers, and hence a topological change. Tip splitting, followed by merging of reentrant tips,
provides a mechanism for this change. This observation agrees with the conclusions of
Abeyaratneet al. [1]. The splitting event is a complicated dynamic process that is not fully
understood from an analytical viewpoint. Our simulations indicate that it occurs above a
critical level of loading.

Our model does not include a specific nucleation criterion analogous to the one adopted
by Abeyaratne and Knowles [3]. Thus it cannot predict nucleation of a high-strain zone in a
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region entirely in the low-strain phase, and vice versa. It is possible to incorporate a nucle-
ation criterion based on critical levels of strain for each phase, by a suitable modification
of the level-set reinitialization scheme.

The method is fully capable of treating multiple phases of different crystal symmetry
with three-dimensional kinematics and fully nonlinear stored-energy functions. When so
extended, it is directly applicable to the study of the austenite–martensite transitions occur-
ring in specific shape-memory alloys. Thermomechanical coupling, especially important in
transitions with substantial latent heat, can also be incorporated. We intend to pursue such
issues in later studies.
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