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A computational method is proposed for the dynamics of solids capable of twinning
and phase transitions. In a two-dimensional, sharp-interface model of twinning, the
stored-energy function is a nonconvex potential with multiple wells. The evolution
of twin interfaces is governed by field equations and jump conditions of momentum
balance, and by a kinetic relation expressing the interface velocity as a function of the
local driving traction and interfacial orientation. A regularized version of the model
is constructed based on the level-set method. A level-set function which changes
signs across the interface is introduced. The evolution of this function is described
by a Hamilton—-Jacobi equation, whose velocity coefficient is determined by the
kinetic relation. Jump conditions are thereby eliminated, allowing finite-difference
discretization. Numerical simulations exhibit complex evolution of the interface,
including cusp formation, needle growth, spontaneous tip splitting, and topological
changes that result in microstructure refinement. The results capture experimentally
observed phenomena in martensitic crystals 1999 Academic Press

0. INTRODUCTION

We present a new numerical method for the computation of propagating interfacesin s
materials, such as crystals undergoing twinning, or shape-memory alloys capable of p
transitions of austenite—martensite type. Phase boundaries propagate in crystalline soll
subsonic speeds that cannot be determined solely from the constitutive law and the bal
laws of continuum mechanics. Various models of phase-boundary propagation invol
coupling of field equations and jump conditions on evolving discontinuity surfaces, whick
not amenable to the use of standard computational techniques. The present paper repr:
an effort to overcome such difficulties.

302

0021-9991/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.



TWINNING AND PHASE TRANSITION DYNAMICS 303

Many crystalline solids admit multiple phases. Each phase is associated with a dist
crystal symmetry type or orientation of the lattice. The experimentally observed mech
ical behavior of shape-memory alloys is quite complex. Under a suitable combination
thermal and mechanical loading, they develop spatially compiiexostructures These
comprise a collection gfhase boundarielsetween regions of the body in different phases
or twin interfacesetween differently oriented twin lattice variants. Although the behavic
within each phase or variant is often essentially elastic, interface evolution is accompal
by energy dissipation. As a result, the overall mechanical response of these materic
hysteretic. In biaxial loading experiments in a Cu—Al-Ni single crystal, Chu and James
observed laminated twinned microstructures forming in the martensitic phase. Differ
regions were occupied by collections of parallel twin layers. These bands taper dow:
needlelike tips, sometimes in the interior, but usually when they encounter the bounc
of a differently oriented laminate. Evolution of this microstructure under load changes
complex. Itinvolves largely longitudinal growth of needles, combined with sudgitting
of needle tips, that frequently leads to complete separation of a twin band into finer nee
[1, 9] and results in overall microstructure refinement.

The stored-energy function for such a solid can be modeled as a honconvex multiv
function. Each well corresponds to a preferred deformation state associated with a spe
phase of the material. Various studies of static microstructural morphology focus on
variational problem of global minimization of the total energy functional (e.g., [6, 18, 24]
They predict energy-minimizing configurations that typically involve microstructures wi
fine-scale mixtures of two or more phases. These capture many observed features o
crostructure morphology in static situations. On the other hand, time-dependent behg
under applied loads cannot be fully understood by energy minimization, as it is not er
getically conservative and involves inertia effects. In addition, local energy minima, whi
may be physically relevant [1], cannot be identified in this fashion.

In order to understand evolving phase transitions, a number of models for continu
dynamics of transforming materials were developed. They all share the basic balance
of continuum mechanics as a starting point. These conservation laws are of mixed t
that is, the underlying partial differential equations change from hyperbolic to ellipti
depending on local properties of the solution. This is due to nonconvexity of the stor
energy function. Traveling discontinuities arise naturally in this setting and are governec
Rankine—Hugoniot jump conditions. They are cabbdcksvhen they separate states in the
same phase @hase boundarieshen the states on either side are in different phases. Bo
kinds give rise to dissipation when in motion. Dynamic problems involving phase boundat
suffer from a massive loss of uniqueness of solutions: in contrast to shocks, the propag:
speed of these fronts is not completely determined by momentum balance (see, e.g., |
The imposition of the second law of thermodynamics (Clausius—Duhem inequality) fails
select a unique solution in general, although it rejects some that are physically unaccept
As a result, an additional constitutive criterion is needed for the determination of interfe
dynamics. The following approaches to that effect have been proposed:

Various ways of regularization of the underlying PDEs augment the constitutive law
including additional effects, such ascosityandhigher-order gradientsin these models,

a sharp interface is replaced by a transition layer with internal structure (e.qg., [4, 5, 11,
31, 32)).

Alternatively, phase-field modeistroduce an additional field variable—the order para-

meter—that describes the location and structure of the phase-transition layer. This



304 HOU, ROSAKIS, AND LEFLOCH

variable satisfies an equation of Ginzburg—Landau type involving a two-well potent
among other terms. This is coupled to the momentum-balance equation (see, for inste
[7,13]).

Finally, in thesharp-interface theoryinterfaces are treated as discontinuity surfaces c
zero thickness. Additional constitutive information is prescribed for them. In the simple
such theory, the energy dissipation is found to equal the product of the normal interf
velocity and thedriving traction The latter is determined by the local states on either sid
of the interface. The model introduces a constituliireetic relationthat determines the
velocity as a function of the driving traction (and possibly of other variables) [2, 3, 12, 2
28, 33, 34]. More complex theories prescribe, in addition, interfacial stress and energy [.

It is worth noting that diffuse-interface theories of the first two kinds seleqiexific
kinetic relation for the sharp-interface model that they approach in a suitable asympt
limit [4, 13]. For one-dimensional elastic bars, Abeyaratne and Knowles [3] establish we
posedness of the Riemann problem when a kinetic relation is specifiedgation criterion
is also prescribed and determines the onset of phase change. More general initial dat
treated by LeFloch [21].

For definiteness, we focus on a two-dimensional, sharp-interface model for dynal
twinning processes in body-centered cubic (anisotropic) crystals. In Section 1 we rev
the dynamic field equations and jump conditions. Section 2 describes specific constitu
choices. Generalizing the approach of Abeyaratne and Knowles [3], we adopt a kinetic
lation for the twin interfaces that takegerfacial orientationinto account. Thisinisotropic
kinetic relation determines the normal interface velocity at each point as a specific funct
of the driving traction and the interface unit normal. A more detailed treatment, as well
analytical solutions for specific simple problems, may be found in [26, 27] for the case
statics and in [28, 34] for the dynamic case.

The development of computational algorithms for evolving interfaces poses an import
challenge. Standard shock-capturing schemes and finite-element methods cannot be a
directly to the sharp-interface model. For classical fluid dynamics problems, it is kno
that difference schemes consistent with the conservation form of the equations converg
weak (discontinuous) solutions of the PDEs. This result is not pertinent for phase-transi
problems, due to the indeterminacy of phase-boundary motion. Phase interfaces turn c
be very sensitive to numerical dissipation, regularization, and mesh refinement.

The challenge is therefore to design numerical schemes that are consistent with a gi
independently assigned interfacial kinetic relation. This should be done in away thatens
convergence of the numerical solution to that of the sharp-interface problem as the n
size approaches zero. The interface should be driven by the given kinetic relation ra
than by artificial numerical dissipation.

A numerical algorithm that meets these requirements was proposed by Zhahg
[37]. Therein phase boundaries were tracked and discontinuities captured by a high-o
Godunov-type scheme. This method is quite efficient in one-dimensional problems v
a limited number of interfaces. For higher-dimensional problems, the front-tracking te
niques developed for computational fluid dynamics by Gliratral. [14], and also by
LeVeque and Shyue [22], could be adapted in principle. However, tracking interfaces w
complex geometry in higher dimensions leads to considerable numerical difficulty. T
problem is avoided by the method we propose below.

The level-set formulatiorfor evolving curves or surfaces was introduced by Oshe
and Sethian [25] in a computational method for curvature-driven interfaces. The m
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advantage of this approach is that it can handle singularity formation (corners or cus
self-intersection, topological changes, and the formation of complex interface geom
with no additional computational complexity. Such phenomena are typically encounte
in twinned microstructure evolution.

The evolution of interfaces driven solely by curvature is independent of processes tal
place elsewhere in the bulk. Recently, the level-set approach was extended to situa
where bulk processes are coupled to the interface in some way. For instance, the inte
between two distinct Newtonian fluids interacts with the Navier—Stokes bulk flow throu
convection and surface tension in studies by Sussshah [30] and Changet al.[8]. The
twinning problem studied in this paper involves interfacial coupling through kinetics al
momentum balance to an elastodynamic process in the bulk material.

In Section 3, we develop an alternative level-set formulation of the twinning problem
introducing an additiondével-set functiow. The interface is viewed as the zero level set o
¢. In order to avoid discontinuities in computation, the interface is replaced by a transit
layer containing all points wher@| < ¢. Heree is a small regularization parameter that
controls interface thickness. Outside this layer, the field equations of the sharp-interf
model are maintained, while within it, the stored-energy function undergoes a smo
transition from a low-strain branch to a high-strain branch. The regularized driving tractic
now defined on the entire domain, is obtained from a dissipation-rate calculation analog
to the one for sharp interfaces. The level-set funciiavolves according to a Hamilton—
Jacobi equation of the general fogn— V|Ve¢| =0. HereV, the normal velocity of level
sets ofp, is delivered by the kinetic relation. This allows us to arbitrarily select any kinet
relation from the sharp-interface model. In contrast, in theories of the viscosity—capilla
type, the regularization enforces a particular form of the kinetics that cannot be alterec
specific model is described in detail in Section 4.

To some extent, our formulation is analogous to the phase-field models constructe
Fried and Gurtin [13]. The role played by the level-set function is similar to that of an ord
parameter. However, our approach is an attempt to mimic the sharp-interface model, witl
introducing additional physics (to the extent allowed by regularization). In particular, v
do not include explicit interfacial and exchange energies as it is done in [13].

A finite-difference discretization of the level-set formulation is presented in Section
Section 6 describes the results of a number of simulations with emphasis on morpholoc
evolution of the twin interface. Various interesting phenomena are observed. These inc
needle and cusp formation from an initially smooth interface, spontaneous tip splitting a
twin needles reach the boundary, and topological changes where a twin zone sepa
into two disjoint regions. All of these phenomena illustrate an important mechanism
microstructure evolution and refinement; they bear a strong resemblance to the experim
observations of [1, 9].

1. SHARP-INTERFACE THEORY

As shown in [27, 34] many aspects of twinning deformations in body-centered cul
crystals can be described in the setting of anti-plane shear, which we employ here. A
cussion of dynamic anti-plane shear can be found in [28]. We adopt a two-dimensio
description. Boldface letters denote vector&f Consider a body which occupies a cylin-
drical region with open-bounded cross sectiorr R2. Anti-plane sheamotions (time-
dependent deformations) are described by the soatanf-plane displacemefield u(x, t)
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for x=(x, y) € 2, t > 0; its physical meaning is given in [27, 28]. The displacemeis
assumed continuous and piecewise smooth.sHear-strain vector

v = VU = (Ux, Uy) (1.1)

and the particle velocity; suffer jump discontinuities across certaimerfaces that is,
time-dependent curvdg C Q.

The global, or weak, form dinear momentum balandevolves the shear-stress veciqr
the acceleration;, and the constant mass density 0. It requires that for any subregion
PcCQ,

/ a-nds:/puttdA. (1.2)
aP P

The constitutive relation of a hyperelastic material supplies the stress vector as the grac
of the stored-energy function \¢):

oW
o=—. 1.3)
9y
The essential ingredient of most models of phase transformations and twinning i
nonconveXV with multiple potential wells. For the simplest description of twinning [26—28
it suffices to viewW as a two-well potential

W) > W(0O) =W(E) =0  forall v e R?, (1.4)

with global minima (wells) aty = O andg, whereg = const. is the twinning shear vector. We
assume that there are twsjointregions of strair§, i =0, 1, whereW is strictly convex,
with 0 e S and€ € S;. We refer toS andS, as thdow-strain phaseandhigh-strain phase
respectively. Convexity fails for strains outsife For simplicity we set
Wiy) — {Wo(’)’) for vy € &, (15)
Wi(y)  fory e S,

whereWy and W, are globally defined strictly convex functions achieving their globa
minimum at0e & and§ € S, respectively. The details of these functions embody crys
tallographic and other characteristics of the material which are discussed in detail in [
Stability considerations rule out strains wh&¥eis nonconvex as physically unattainable.
This means that at each instant the domain is separated into two time-dependent su
Qit, such that strains are in the low-strain ph&é Q; and in the high-strain phasg in
Q;f. In particular, W = W in Q;, while W =W in Q;.

Theinterfaceor twin boundany; = ;" N Q" consists of piecewise-smooth curves that
separate the part of the body that is in the low-strain phase from that in the high-strain ph
The unit normal td*; may suffer discontinuities at isolated points; this allows for needlelik
boundaries observed in twinning [9, 27]. Strain and velocity discontinuities occur agfoss
while |[Vu| e S U S onQ —T;. In generalI'y may evolve and change shape. The motior
of interfaces is determined by specifying the (scatemmal velocity V=V (x, t) at each
pointx of I'y and timet.
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The jumps in strain and velocity acroBs are restricted by the continuity ofto obey
the jump conditions [2, 28]

[Vu] -t =0, (1.6)
[ud+VIvVu]-n=0. 1.7)

Here[y]=v* — v~ isthe jump of any fieldr acrosd™;; the+ and— superscripts indicate
limits asT'; is approached frome;t; n andt are the unit normal and tangentig respectively,
with n pointing into 2. At points whereu is smooth one may employ a localization
argument to reduce the global momentum-balance law (1.2) to the equation of motion

V.o = pUy on —TIt. (18)
At points on the interfack; localization of (1.2) yields a momentum jump condition [2, 28]
lel-n+Volul=0 onTy. (1.9)

Apart from the interfacé, discontinuities may also occur within each of the regitrts
These areshock waveand they are subject to the above jump conditions (1.6), (1.7), a
(1.9) as well. However, they differ from interfaces; strains on either side of a shock we
are in the same phase.

The motion of shock waves and interfaces is accompanied by energy dissipation.
dissipation rateA(t) is the excess of the rate of external work over the rate of change
stored elastic and kinetic energy; it is required to be nonnegative by virtue of a suita
version of the second law of thermodynamics [2]:

d 1
A(t):/ uta-nds——/ (W+—,out2)dAz 0. (1.10)
Q2 dt Q 2

Abeyaratne and Knowles [2] show that

A= [ fvds (1.11)

I't
wheref is called thedriving tractionacting on the moving interfadg andV is the normal
velocity of I';. In the present setting the driving traction takes the form [28]
1 _
f=—-[W]+ é[[Vu]] (ot +07) onTy. (1.12)
It follows from the localization of (1.11) that the following dissipation inequality must holc
fv=>=0 onrt. (1.13)

In one-dimensional problems involving a single material phase—hence only shc
waves—the field equations and jump conditions analogous to the above suffice for uni
ness of solutions to suitable initial-boundary-value problems, provided the dissipat
inequality (1.13) is enforced. In contrast, the presence of interfaces separating diffe
material phases results in a massive loss of uniqueness [17]. It is by now well underst
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(e.g., [3, 21]) that additional constitutive information is needed in order to character
the evolution of interfaces. In one dimension, this may take the formkafetic relation

V =g(f), between the rate of phase transformation (speed of the intarfeaued the driv-
ing traction f. Abeyaratne and Knowles [2, 3] show that such a criterion selects a uniq
solution to the Riemann problem. Tsai [34] and Rosakis and Tsai [28] generalize this
proach to possibly curved twin boundaries in two dimensions. Following those studies,
postulate that there exist&imetic relation which determines the normal velochyat each
point of I't in terms of the local driving tractioi and—in addition—the unit normal to
the interfacd™; at that point. Specifically, we postulate

V =g(f,n) onTly, (1.14)

whereg is the kinetic response functiooharacteristic of the material. The explicit de-
pendence on the local boundary orientation through the nonntakes into account the
anisotropy of the material. The kinetic response functjésrequired to satisfy

fg(f,n)>0 (1.15)

for all values off and all unit vectors, so that it is consistent with the dissipation inequality
(1.13).
2. ASPECIFIC MODEL FOR TWINNING

We adopt a constitutive model (Rosakis and Tsai [28]; Tsai [34]) originally developed
describe twinning deformations in body-centered cubic crystals. For simplicity the stor
energy function of each phase in (1.5) is chosen to be quadratic:

Wo(y) = %mz, Wa(y) = %w — ¢ (2.1)

The constani > 0 is the shear modulus. For the constitutive law specified above, tl
stress-strain relation is found from (1.3) and (2.1). liniear in each phase:

() = wy ong,
o =9, s (22)
o) =pny—&  onQ.
The equation of motion (1.8) then reduces to the wave equation
1
AU = gutt onQ — I, (23)

valid away from the interface. The constant /u/p is theshear wave speedror the
special material at hand there are two kinds of traveling discontinuitiesshemk waves
the strains on either side of the discontinuity belong to the same phase. It can be sh
from the jump conditions (1.6), (1.7), (1.9) that the normal veloditynust equal the
shear wave speed Thus shock waves reduce to ordinary elastic shear waves for tt
special model, as a consequence of the linearity of the stress—strain relation in each p
Another possibility is that the strains on either sidd'pbelong to different phases. Then
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the jump conditions (1.6), (1.7), (1.9) dictate thak c. The jump conditions now reduce
to [28]

(§-mn

Vul=1=v7¢

onTy, (2.4)
determining the strain jump acro§s in terms of the normal velocity and the normal
n. Such al; is called a subsonitwin interface The linearity of the stress response inside
each phase dictates thit= 0; hence elastic shear waves are dissipation free. In contra
the driving traction on twin interfaces does not vanish in general; one finds from (1.12)
(2.2)

1
f=2¢10' M +0°00)] = € (Vur +Vu =& onl.  (25)
A specific form of kinetic relation was considered in [28]. For simplicity §et (0, §).
Then, lettingn = (n1, ny), choose in (1.14)

V =g(f,n) = Mf|ny|, (2.6)

where the constari¥l > 0 is a mobility coefficient. The motivation for this special type
of anisotropic orientation dependence is discussed in detail in [28, 34]. It arises fror
dislocation model of the interface. It is to be compared with the more common isotro
kinetic relationv = M f, which does not depend on interfacial orientation. The latter give
rise to interface morphologies that are not observed experimentally.

Thesharp-interface dynamic probleconsists of seeking a solutiarof (2.3) subject to
the jump condition (2.4) on the moving cur¥e. The evolution ofl'; is to be determined
from a kinetic relation (1.14), such as the specific form (2.6), wWiteupplied by (2.5).
Initial conditions involve specification of

u, 0 =uo(®):  U(x,00 =wvo(x) forxeQ;  Ti—g=To; (2.7)
herel is the initial interface. Boundary conditions typically involve specification of
u=0>0 onoQ, o-n=17 0N, (2.8)

whered:Q2 and 3,2 are complementary subsets 2. The equilibrium problemwith u
andl'y =T both time independent is studied in [26, 27]. For stability reasons, an additior
restriction is imposed: the strains in either phase are confined to neighborhoods of
minima of W (wells), in order to avoid regimes where tiéis nonconvex. It is found that
the configuration of” is severely restricted by this requirement. In particular, the interfac
normaln is confined to be close to the direction of the twinning shear vegtamile the
interface itself cannot have corners but may have cusps. The only equilibria with zero ene
are such thaf is a collection of parallel straight lines normalgpso that the high- and low-
strain regions are parallel layers. The strain alternates Wora- 0 to Vu =€ in alternate
layers, so that is piecewise linear. This layered microstructure is observed experimenta
[9]. On the other hand, if* is a bounded closed curve, then it must have the shape of
lamellaor flat needle normal t§ and must terminate in cusps. Similar restrictions on th
shape of evolving interfaces arise from preliminary dynamic studies [28, 34] where
needlelike cusped morphology is also found to be possible.
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3. REGULARIZATION: THE LEVEL-SET FORMULATION

With a view toward numerical computation, we construct an alternative regularized v
sion of the sharp-interface theory just described. Our approach replaces the iffterfibe
a smooth transition layer of specified thickness, sa@utside this layer the field equa-
tions of the sharp-interface model are maintained, while within the layer the stored-ene
functionW undergoes a smooth transition from the low-strain brafglo the high-strain
branchWi; see (1.5). Special emphasis is placed on the kinetics of the layer. We obt
regularized analogues of the driving tractibrand interface velocity and relate them with
a kinetic relation formally identical to the one specified in the sharp-interface theory. \
try to avoid introducing additional physics through the regularization but instead focus
remaining as faithful to the sharp-interface model as possible.

We introduce a new field, called thevel-set functio(x, t), with the property that

>0 on®; <0 onQ; Iy = {XeQ:pX,t) =0} (3.1)

so that the interfacg; is the zero level set af. For examplegp may be chosen as signed
distance fronT'y, namely

(X, 1) = £dist(Ty, x),  xe Q. (3.2)
The level sete = const. are moving curves whose normal veloditik, t) obeys
¢t —V|Ve| =0 ongQ. (3.3)

Note that this define¥ globally on; its values onl'; give the interface velocity. The
sign of V in (3.3) is chosen so that is positive wherf2;t grows at the expense of . We
turn next to the regularization of the stored-energy function. FohG< 1, letW(~, h) be

a smooth function that interpolates between the two branches of the stored-energy fun
in (1.5), so that

Wy, 0 =Wo(y), Wy, 1) = Wi(y). (3.4)

Let H be the Heaviside step function, with(z) =1 for z> 0 andH(z) =0 for z< 0.
Recalling (3.1) we can writ&V(~, H(p)) for the stored energy of the sharp-interface
model, noting that it switches from the low-strain bralto the high-strain branct;
across the interfad®. For each > 0 letH, be aregularized Heaviside functiomwe require

H. to be smooth and monotonically nondecreasing with

, 0 forz< —s,
H/(z2) > 0 for|z| <e; He(2) = (3.5)
1 forz> e.

The regularized Dirac delta function is the derivative
5:(2) = H/(D). (3.6)

The first step of the regularization procedure is to replMtesherever it occurs with the
regularized stored-energy function

W, (v, ) = W(v, He(9)). 3.7
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In effect this replaces the interfacial discontinuitygiwith atransition layer
Iy ={xeQ:lpX )| <e}, (3.8)

whose width is approximatelys2 Theregularized stresss defined in direct analogy with
(1.3):

9
o7, ) = an(% ®). (3.9)

To illustrate this idea we consider two examples of regularized energies:

Model I. One possibility is a linear interpolation between the low- and high-strai
branched\p andW;, so that (3.4) is satisfied:

W(y, h) = Wo(v) + h[Wa(y) — Wo()]-
In view of (3.7) the regularized stored energy becomes
W, (7, 9) = Wo(y) + He (@) [Wi(y) — Wo()]. (3.10)
Model Il. If the low- and high-strain branch&¥, andW, are related by a translation,

as in the special model (2.1), one may alternativelpiiet, h) = Wy (v — h¢), so that in
(3.7) we obtain

W, (7, ) = Wo(y — He(@)8). (3.11)

Similar constructions were employed by Fried and Gurtin [13].

Next, we enforce the global forms of momentum balance (1.2) and the dissipation
equality (1.10), but withV ando replaced with their regularized counterpafis ando ..
Momentum balance reduces to the local equation of motion (1.8) in terms of

V. o.(VU, ) = pUy ongQ. (3.12)

A simple calculation utilizing (3.7), (3.8), (3.12) and the divergence theorem shows that
analogue of the dissipation rate in (1.10) satisfies

d 1 oW,
Ag(t):/ utag~nds——/ (W£+put2)dA:—/ et dA. (3.13)
a0 dt/q 2 o 09

If we now define theegularized driving tractioras

AW
fo = _aih(% H. (¢)) (3.14)

and employ (3.3), (3.6), and (3.7), we conclude from (3.13) that

At) = / f,V8,(0)| Vol d A (3.15)
Q
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The normal velocityV of level sets enters this expression after use of (3.3). Note th
8. (¢)—hence the integrand in (3.15)—vanishes outside the transition Igyier view of
(3.6), (3.8). The regularized driving tractidn is a globally defined field, wheredsin the
sharp-interface theory is only defined on the interfAgdts definition (3.14) is motivated
by a comparison of (3.15) with (1.11). Indeedyifanishes o’y andé is any smooth field,
one can adopt an argument of Chagl. [8] to show that

/95(¢)|V(ﬂ|dA=/ fds
Q It

in terms of the Dirac delta distribution. This shows that (3.15) is a regularized analogue
(1.11).

Itremains to determine the evolution of the interfageHere we adopt the kinetic relation
of the sharp-interface theory (1.14). Note that the unit normal vector to level setssich
asIt—is given by

Vo

n= onQ. (3.16)
Vel

The kinetic relation is enforced in terms of the regularized driving traction of (3.14) in
fashion formally identical to (1.14):

Vo )
V = fo, — ).
g( Vol

Substituting this folV into (3.3) yields an evolution equation for the level-set function
after observing thaf, in (3.14) andVv are now fields defined throughoit

v
¢%—g(n,“f)V¢p=o ong. (3.17)
Vol

Equations (3.12) and (3.17) comprise a system of two coupled partial differential eq
tions foru andg. Given the regularized stored-energy functidhin (3.7) and the kinetic
relationg in (1.14), one determines, and f, from (3.9) and (3.14), respectively. The
regularized problentonsists of solving (3.12) and (3.17) for the two unknown functions
andg, subject to the initial conditions

ux,0) = uo(x), U(x,0 =wo(x), @(x,0=g¢o(x) forxeQ, (3.18)
and the boundary condition
u=4a onoQ. (3.19)
We choos@g as signed distance from the initial interfd&e For simplicity we only consider
Dirichlet boundary conditions far. The issue of boundary conditions foiis considered
in Section 5. A substantial advantage of the above construction is the elimination of

jump conditions by the regularization procedure. Once the regularized problem is sol
the evolving interfac&; is easily determined as the zero-level sep6f, t); see (3.1).
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4. THE REGULARIZED PROBLEM FOR A SPECIAL MODEL

We restrict attention to the special constitutive law (2.1) and the kinetic relation (2.1
For Model |, the regularized stored energy (3.10) now takes the form

Wy, ) = & (172 + Ha (o) (€12 — 2¢ - )], (4.1
For the alternative Model Il, (3.11) yields
W.(7.9) = 517 = H.(0)6 (4.2)
The regularized stress (3.9) is the same for both models:

o.(7, ) = uly — He(p)€]. 4.3)

On the other hand, (3.14) in conjunction with (4.1), (4.2) results in different versions of t
regularized driving traction:

1
Model I: fo(vy, @) = ué - (7 - §£>,

Model II: fo(v, @) = u€ - (v — He(9)8).

(4.4)

Observe that the values of the two versionsfphgree on the interfadg;, wheregp = 0.
Noting thatH, (0) = 1/2 and using (2.2), we find for both models

1
fo(v,0) = 3¢ [0 () + ()] (4.5)

Compare this with (2.5). In both the sharp-inerface theory and the regularized model,
driving traction at the interface is proportional to the average of the stresses corresp
ing to the two phases. Choosing the coordinate system s&thdb, &), let x= (X, y),
n= (N1, ny). We consider a slight generalization of the kinetic relation (2.6), hamely,
combination of an isotropic relatiovi = M; f and the anisotropic version (2.6). The linear
dependence offi is chosen for simplicity. Given two constarig > 0, we set

V = g( f, n) = My f + M2|n1| f. (46)

Substitution of (4.3) into (3.12) furnishes the momentum-balance equation:
1
AU — ?un = &£8:(@)py onQ. 4.7)

In the evolution equation (3.17) fe@r, we employ the kinetic relation (4.6) with andn
replaced with their regular counterparts (4.4) and (3.16), respectively. The special ver:
of the evolution equation (3.17) so obtained reads

Model I: ¢ —&n(uy — &/2)(M1|Ve| + M2gx]) =0 (4.8)
and alternatively
Model I: @t — En(Uy — EH: () (M1 V| + M2|gpx]) = 0. (4.9)
We impose the Dirichlet boundary condition

u=ky onde, (4.10)
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where the constant8k < &/2 is theapplied shearThe explicit appearance of the consti-
tutive parameterg, ¢, andé may be avoided by introducing the change of variables

. R ~ 1 R R R R
t=ct, axvybD= g(U(x, y.t/0)—Kky), oy, 1) =9eyt/0). (4.11)

Note that( satisfiedi =0 ona<2. Define the normalized parameters
k=k/e,  M;=&g%uM;/c. (4.12)

In terms of these new variables (after dropping hat overscripts) we obtain normali:
versions of Eqgs. (4.7) and (4.8) for Model I:

AU — Uy = 8. (@) gy onQ (4.13)
and
@ — (Uy + Kk —1/2)(M1|Vp| + M2|gx[) =0 onqQ. (4.14)

The system consisting of (4.13) and (4.14) is to be studied numerically according ti
procedure laid out in the rest of the paper.

5. FINITE-DIFFERENCE DISCRETIZATION

We describe finite-difference discretizations for the regularized model (level-set formu
tion) developed in the previous section. First, we specify regularized versions of the sing
Dirac delta functiord and the discontinuous Heaviside functidn As in [8], we define the
regularized delta functiob. as

5.(2) — d B Hcosmz/e)/e  for iz <,
E for|z| > e,

and a corresponding regularized Heaviside functiyras

0 forz < —¢
H.(2) = {(z+ £)/(2e) 4+ sin(rz/e)/(2m) for|z] < e,
1 forz > e,

so that the relatiofd/(x) = 8. (x) holds.

An N x N grid (with spacingh = 1/N) is laid on$2. Denote byu;'; the approximation of
u(xi, yj, tn), wherex; =ih, y; = jh, t, =nAt, andAt isthetime step; heiig j =1, ..., N,
while n is a nonnegative integep,’; is defined similarly. Herg, j =1, ..., N, whilenis
a nonnegative integer. We use a second-order, centered-difference discretization in s
and time for the normalized momentum-balance equation (4.13). Introduce the differe
operators

DS fi’j = (fi+1,j — fi_l,j)/Zh (centered),
Df fi,j = (fi,j — fi,Lj)/h (backward),
Df_ fi,j = (fi+1,j — fi,j)/h (forward).
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The operator®}, DY, andD?. are defined similarly. The centered-difference approximatio
to the Laplacian operatak then takes the forma, = DX DX + D? DY. The discretized

version of (4.13) thus reads' D, u'; = Apuf; — 8 (¢ l)D0 i'j» or more specifically,

n+1

Zulj+ulj _ uin+l,j+uinflj 4y, +U|J+1+u|] 1 _s, ( )(/7|]+1 (pﬂjfl
At2? h2 2h '

On the other hand, we employ a second-order ENO scheme to discretize Eq. (4.14) des
ing the evolution of the level-set functign Since we are interested in accurately computing
the convection of interface position, we use the nonconservative form of the ENO sche
[8]. Define a minmod function as

sgnu) min(ul, |v]) if uv >0,

minmodu, v) =
u, v) {0 otherwise.

Here sgn stands for the signum function. Equation (4.14) satisfied by the level-set fynctic
is a specialized version of the Hamilton—Jacobi equation V |Vg| =0 (see (3.3), (3.17),
(4.6)). Suppose momentarily that the normal velodity: V (x, t) of the level sets op is
known. The second-order ENO discretization of the Hamilton—Jacobi equation is given

n n n
(anrl QDI,] _At\/I,JP+ fOI'VI’] >O,
o @l — AtV P_ for Vi, <0,

where

P. = y/(max(pX. 0)2 + min(ps. 0)2) + (max(p’. 0)2 + min(pY. 0)2).

0
I

\/ (min(p*. 0)2 + max(ps. 0)2) + (min(p?., 02 + max(pY. 0)2),
p* = DX¢"; 4+ 0.5h minmod DX DX ¢, D* DX ¢, ),

pf = DX¢'; ; —0.5Sh minmod(D* DX ¢, ;, D* DX¢/";),

p? = DY¢; + 0.5h minmod(D? DY¢";, DYDY ¢"; ;).

pl = D¢, — 0.5h minmod(D? D¢, ;. DY DIg;).

The specific version of (4.14) also involves a te¥fyy|, whose second-order ENO dis-
cretization is obtained by removing the terms corresponding &bove.

Reinitialization and Boundary Conditions for the Level-Set Function

In general, even if we prescribe the initial value of the level-set funegtitmequal signed
distance from the interface, it will not remain a distance function at later times. For larg
time computations it is desirable to kegm@s a distance function. This will ensure that the
interface has a finite thickness of ordefor all time. In [30], an iterative procedure was
proposed taeinitialize ¢ at each time step, so that it remains a signed distance functi
from the evolving interface. Specifically, given a level-set functiQx) = ¢(x, t,) at a
fixed timet,, one computes the solution of the initial-value problem

@ = sgn(e.)(1— Vo),

A
e(X, 00 =p.(x)  ongQ. (6.1
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The solution converges rapidly in time to a function that has the same sign and the s:
zero level set ag,, and also satisfiel3/¢| =1, so that it equals signed distance from the
interface. Afterp evolves at each time step according to (4.14), it is reinitialized by solvin
(5.1) for two time steps; this suffices due to rapid convergence. This procedure is crucia
our formulation, since the extension of the normal velokitin our case is not continuous
across the phase boundary in the sharp-interfaee Q) limit. This makes computations
more difficult than in the fluid interface problem considered in [8, 30], where the norm
velocity is continuous across the interface.

We consider next the issue of boundary conditions for the level-set function at t
boundarydQ. In our calculations we use a one-sided difference approximatiom,for
andgy at the boundary. For example, at the sides0, 1 we approximatey (0, y;, tn) by
Digg ;= (91 —¥0;)/handex (L, yj, th) by DXy ; = (¢n j —¢n_1,))/h.

When the normal velocity/ is nonnegative (the interface moves towatd), this pro-
vides an upwind approximation of the Hamilton—Jacobi equation and results in a sta
discretization. However, we find in our computations that the interface splits at the bou
ary and comes back into the domain, so that the normal velocity becomes negative
certain interface portions. Then the one-sided boundary condition we use is a downw
approximation and causes numerical instability. It is our reinitialization process that stz
lizes the scheme. On the other hand, one must provide some artificial boundary cond
for ¢ in order to continue the computation after the interface splits. One should note t
the level-set function is physically relevant only to the extent that it describes the interf
position, whergp = 0. Hence, the manner in which we specify boundary conditions fc
¢ does not change the physics of the problem, as long as the interface does not inte
the domain boundary. In the problem examined here, the high-strain zone bounded by
interface is prohibited from extending to the boundary because of the boundary conditi
for u, which force the neighborhood of the boundary portioas0, 1 to be in the low-strain
phase. Instead, the interface may taper into tips that tégzbnly at a finite number of
points. The interface still satisfies the evolution equations in the interior and the bound
condition for the displacemeuntis strictly enforced. In some sense, our specific numerice
boundary condition and the reinitialization process provide a way to continue the interf:
solution after it reaches the domain boundary. The interface chooses to split afterwar
that it can further decrease the total energy. This splitting is observed in experiments (9)
is consistent with our understanding that solutions that tend to minimize energy deve
fine-scale structures in time.

We only employ Model | in our computations. An additional numerical difficulty arise
in computations with Model Il. In particular, the normal velocity of the interface in (4.9
(Model 1) involves the difference of two functions, —&H,(¢). In the sharp-interface
theory, both terms represent discontinuous functions across the interface. In the sh
interface ¢ — 0) limit, the second term involves a step function, while the discontinuity i
uy is due to the Dirac delta term in the wave equation (4.13) vehen0, or equivalently, to
the jump conditions (2.4). In the regularized model, however, the discretized versions o
andH, (¢) may have different structures in the interface layer. In the numerical calculatiol
these differences can produce overshoot and undershoot across the interface. This cal
to orderO(1) errors in interface velocity. On the other hand, the corresponding termin (4.
(Model ) readsuy — £ /2 and involves only one discontinuous tewgn One can show that the
behavior of the termay in Model | tends to sharpen the interface layer by locally increasin
|Ve|. This tends to improve the determination of the interface position. The reinitializatic
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scheme for discussed above serves to maintain the layer thickness to be ofdatell
time. In Model Il, however, the interplay @i, andH, (¢) may tend to flatten the level-set
function at the interface, thereby increasing uncertainty in interface position. Consequel
Model | is preferable from the computational standpoint and is used throughout.

6. NUMERICAL RESULTS

The problem we consider is the dynamic evolution divén nucleusthat is, a small
region in the high-strain phase that is assumed to have already nucleated at the center
unit square = (0, 1) x (0, 1), subject to displacement boundary conditions correspondir
to constant applied shear loading. Specifically we impose the Dirichlet boundary condit
u=Kkyonag, where the constantfk < &/2 is theapplied shearin the remainder of the
paper, all quantities stand for their normalized counterparts, defined in (4.11) and (4.
The boundary condition reduces to

u=20 onog. (6.1)

For convenience, the initial interface (nucleus boundary)s chosen to be an ellipse
centered at (0.5, 0) with semimajor adis= 0.3 and semiminor axib = 0.15. The initial
valuegy of the level-set function in (3.18) is set to signed distance figr{positive inside
). We also let initial velocityy = 0 and choose the initial displacementas theelastic
equilibrium(time-independent) solution of the momentum-balance equation (4.13), nam

3
Aup = ag(wo)al;o ongQ:  Up=0 onaQ. (6.2)

The initial displacementy is plotted in Fig. 1. Observe that it is almost linear inside the
initial ellipse. This is in agreement with a standard result from potential theory that appl
to the sharp-interface version of problem (6.2); see [26].

It turns out that the initial driving traction (4.5) does not vanish. The kinetic relation (4.
forces the interface to move; equivalently, the level-set fungti@manges as dictated by
(4.14). The coupling ofi andg in (4.13) and (4.14) drives the subsequent dynamics of th
problem.

All calculations were performed withl = 256,¢ =0.01. We compare various choices
of the mobility coefficientdM;, M, in the kinetic relation (4.6). An isotropic kinetic re-
lation would haveM; >0, M, =0 in (4.6) and (4.14). This seems unreasonable for th
anisotropic twinning problem. The fully anisotropic kinetic relation with =0, M, > 0
can be motivated from a micromechanical model that views the interface as a collectio
twinning dislocations [34]. These dislocations can glide on twinning planes (move alc
the x direction), but cannot climb (move along tlgedirection). Thus this kinetic relation
allows motion of the interface in thedirection, but inhibits motion in thg direction. We
compare this with isotropic kineticd{; = 1, M, = 0), but also consider a version that com-
bines a small isotropic term with the anisotropic oig & 0.1, M, = 3). We also consider
different levels of loading, controlled by the applied shiear

Cusp Formation

Our first calculation studies initial interfacial shape evolution for short time® to
t =1.We choos& =0.3, M; =0, M, = 3 (fully anisotropic kinetics) and = 0.3, b= 0.15.
In Fig. 2, we plot a sequence of evolving configurations of the interface-& 0.2, 0.5, 1.
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Initial displacement, u, N=256, eps=0.025, a=0.3, b=0.15

O

0.08 2] oo

0105 o er 01

140

20
0 o

FIG. 1. The initial displacement, (solution of (6.2)) for an initial ellipse witla=0.3, b=0.15, N = 256,
¢=0.01.

Phase boundaries at t=0, 0.2, 0.5, 1, N=256, eps=0.025, m1=0, m2=3

1 T T T T T T T T T
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FIG.2. Asequence of evolving interface configurationsat0, 0.2, 0.5, 1 for fully anisotropic kinetics with
M; =0, M, =3. Herea=0.3,b=0.15 k=0.3.
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The interface grows mainly in the horizontal direction from the initial smooth ellipse.
quickly develops two sharp tips, which have the appearancesgsand propagate toward
the boundary. The high-strain region developaraellar, needlelike form that tapers into
cusped tips. This generic form is deduced in analytical solutions of both static [26, :
and dynamic [28, 29] versions of the sharp-interface twinning problem. Experimenta
observed twin boundaries are commonly in the form of elongated cusped needles a
specific directions [9]. During growth, the tips are observed to propagate by motion alc
the axis of the needle.

Effect of Kinetic Anisotropy

We compare the effect of isotropic versus anisotropic kinetics in Figs. 3a and 3b, resy
tively. In both cases we impose the same initial conditions with0.2, b=0.1, k=0.3.
For the isotropic case we skt; =1, M, =0. The growing tips in Fig. 3a remain rounded
and do not assume a cusplike form. In contrast, in Fig. 3b, where a fully anisotropic
netic relation is chosen witivl; =0, M, =1, the tips immediately become cusped anc
maintain their sharpness up to contact with the boundary. We regard this as evidence
kinetic anisotropy is essential for the appropriate description of interfacial evolution. Ins
far as we know, the rounded-tip form associated with the isotropic case never seems
experimentally observed.

The effect of the loading level (amount of shddrfor anisotropic kinetics ¥1; =0,

M, = 1) on subsequent interface evolution was studieé fe10.2, 0.3, and 04. Results are
shown in Figs. 4, 5, and 6, respectively. In all these cases, we observed that once th
reaches the boundabg2, it becomes blunted and the cusp develops into a wedge sha
For low loading,k =0.2, the tips remain on the boundary (Fig. 4) up to the end of th
calculation.

Tip Splitting

For higher loadingK = 0.3, Fig. 5), dip splittingphenomenon occurs betwees 1 and
t =2. In particular, each tip splits suddenly into two tips that remain on the boundary, &
onereentrant tipthat propagates backward toward the center of the region. At this load le:
the reentrant tips slow down substantially ty 8. Tip splitting at obstacles is observed
experimentally in a Cu—Al-Ni single crystal by Chu and James [9]. It is recognized a:
mechanism of lowering the total energy by dividing each needle into thinner, flatter need
Models focusing on statics of branched twin microstructures may be found in [19, 20].

For even higher loadk&0.4,t =0.5,1, ..., 8, Fig. 6), multiple splitting events are
observed. The first splitting takes place betweerD.5 andt = 1. The onset of the second
splitting can be seen at= 1.5, and it is more evident byy= 2. The third splitting occurs
aroundt = 3. There are five reentrant tips on each side that split the original lamella ir
six branches; the reentrant tips continue to grow throughout the calculation. However,
growth becomes quite slow liy=4. We plot the total kinetic plus elastic energy in Fig. 7.
Use of (4.1) and the change of variables (4.11) yields the following expression for the t
energy (normalized after division hy&?):

1 1 1
E(t) = E/0 /0 (U2 402 4 [Uy + K — H@)P + H @1 — H.(@)]} dxdy. (6.3)

Sinceu; =0 on the boundary in view of boundary condition (4.10), the first integral i
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FIG. 3. Comparison of isotropic versus anisotropic kinetics. Sequence of interface configurations
t=0, 0.2, 0.6, 1 for (a) isotropic kinetics wittM; =1, M, =0,a=0.2,b=0.1, k= 0.3 and (b) fully anisotropic
kinetics withM; =0, M, =1,a=0.2,b=0.1, k=0.3.
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; t=2, N=256, k=0.2, eps=0.01 ; t=4, N=256, k=0.2, eps=0.01
0.8 0.8
08 | 0.6
] ey 0.4 <>
0.2 0.2
% 0.5 1 % 05 1
1 t=6, N=256, k=0.2, eps=0.01 1 t=8, N=256, k=0.2, eps=0.01
0.8 0.8
o6 ] Ll ——
7 o] ———
0.2 0.2
% 0.5 1 % 0.5 1

FIG. 4. Sequence of interface configurationstat 2, 4, 6, 8 for low load, k= 0.2, and fully anisotropic
kinetics;M; =0, M, =1,a=0.3, b=0.15.

t=2, N=256, k=0.3, eps=0.01 t=4, N=256, k=0.3, eps=0.01
1 1
0.8 0.8
06f — ] 06f — T
= < = =]
0.4 \/ 0.4 \—//
0.2 0.2
0 0
0 0.5 1 0 05 1
t=6, N=256, k=0.3, eps=0.01 =8, N=256, k=0.3, eps=0.01
1 1
0.8 0.8
0.6 — T 06— T
04— o4
0.2 0.2
0 0
o] 0.5 1 0 0.5 1

FIG. 5. Sequence of interface configurations tat 2,4, 6, 8 for intermediate loadk=0.3, and fully
anisotropic kineticsM; =0, M, =1, a= 0.3, b= 0.15. Tip splitting has already occurredtat 2.
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1=0.5, k=0.4, N=256, eps=0.01 t=1, k=0.4, N=256, eps=0.01
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FIG. 6. (a) Sequence of interface configurationstat0.5,1, 1.5, 2 for high load,k=0.4, and fully
anisotropic kineticsM; =0, M, =1,a=0.3, b=0.15. Observe the multiple splittings. (b) Subsequent evolu-
tion att =2.5, 3, 3.5, 4. Parameters are as in (a). (c) Subsequent evolutios &t5, 7, 7.5, 8. Parameters are as
in (a).
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FIG. 6—Continued

(1.10) vanishes; as a result the total energy should decrease due to dissipation caus
interface motion. This is confirmed in Fig. 7. The energy decays very slowly taftef.

It is possible that the solution settles down to a local energy minimum without produci
more fine structures at the interface and possibly without complete separation, altho
this is far from certain. Micrographs of twinned microstructures in Cu—Al-Ni [9] sho\
partially split lamellae with two or three tips; complete separation of layers into two
more thinner needles by means of tip splitting also occurred in those experiments.
model is not intended to capture the complicated behavior of this alloy, nonetheless,
gualitative agreement is quite interesting.

We plot the position of the leading tip as a function of time in Fig. 8. Before the origin:
leading tip reaches the boundary, its speed seems to be almost constant in time. Tip S
has a monotonically increasing dependence on the load level, as expected from the ki
relation; it varies between about one-fifth of the shear wave spémdk = 0.2 and about
one-half fork =0.4. These values seem quite high; they can be reduced by an ordel
magnitude by setting/l, =0.1. We note, however, that tip speeds close.tw Bave been
reported in experiments by Williams and Reid [36].

For low loading, the tip decelerates at some distance away from the boundary du
interaction with it. Faster tips during high loading maintain their speed almost up to cont
with the boundary. The tip stops at the physical boundary and stays there for some t
During this period, the angle of the tip broadens and it becomes somewhat blunted. Aft
certain time, the tip splits and propagates inward into the domain. The speed of propagze
of the reentrant tip is no longer uniform after the interface splits. The speed fluctuatic
observed in Fig. 8 are due to interaction of the interface with elastic shear waves.
latter are generated during initial interface growth and undergo multiple reflections fre
the boundary. In particular, the sudden initial motion of the interface causes elastic st
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Total energy in time, N=256, k=0.4, eps=0.01, M1=0, M2=1, a=0.3, b=0.15
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FIG. 7. Total energy versus time for the simulation of Figké<0.4, M; =0, M, =1,a=0.3,b=0.15).

Tip position in time, N=256, k=0.4, m1=0, m2=1, eps=0.01, a=0.3, b=0.15
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FIG. 8. Position k-coordinate) versus time of the left leading tip for the simulation of Figk & 0.4,
Ml =0, M2 =1,a=0.3, b= 0.15).
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waves to emanate from it [3]. Conversely, a shear wave impinging on the interface affe
the speed of the latter by altering the local stress state and hence the driving traction.

Topological Changes

In order to exhibit the complex nature of interface evolution for longer times, we pe
formed a simulation up tb=100. In this calculation, we start with a small initial ellipse
with semiaxes = 0.04, b= 0.03. This models the situation where a small twircleates
at the origin and grows subsequently. We add a small isotropic term to the usual anisotr
term in the kinetic relation, by choosing; = 0.1, M, = 3. The term in (4.14) associated
with M, allows some mobility in the direction; this is an order of magnitude lower than the
mobility in the x direction associated with the anisotropic coefficidht This allows the
interface to decrease the energy somewhat faster than in thilgas® considered above.
The load level is set tkh = 0.3. Results are shown in Fig. 9. Initial evolution uptte 8 is
gualitatively very similar to the one shown above in Figs. 2 and 5. The nucleus grows i
a flat needle. The only difference is that the initial tips that emerge from the nucleus
slightly more blunted than the cusped tips of Fig. 2. This is entirely due tMthierm. By
t =10 the emerging tips have reached the boundary and split, and two reentrant tips |
moved into the interior. This configuration is almost identical to the one$08 in Fig. 5,
which corresponded to the same load level, but fully anisotropic kinetics and a larger ini
ellipse. Att = 15, each of the four tips remaining on the boundary splits once more into tw
The four new reentrant tips, however, only move into the interior by a limited amount a
almost stop by = 25. In contrast, the two original reentrant tips continue moving towar
each other at a faster pace. At some time betweeR5 and = 30 they actually meet at the
center. They coalesce antbgological changeakes place: the needle separates completel
into two disjoint regionsEach of them has four tips on the boundary and two reentrant tip
Further evolution is rather slow, especially after 80. The two separate needles move
slowly away from each other in the direction. This is facilitated by the presence of the
small isotropic kinetic term. Configurationstat 95 andt = 100 were virtually indistin-
guishable when laid on top of each other. The final configuratior=at00 consists of two
parallel straight layers, which are split and tapered at the boundary. The distance betv
the layers is roughly equal to the distance of each from the top and bottom boundal
The total energy is plotted as a function of time in Fig. 10. The energy starts decay
very slowly byt = 20. However, approximately &it= 27, it starts decreasing rapidly again;
this corresponds to the actual instant of topological change (complete separation into
regions). It is not clear whether the final observed state is close to equilibrium associ
with a local energy minimum. Itis conceivable that the remaining reentrant tips might mc
toward each other, and a second complete separation might occur eventually. This w
give rise to four disjoint layers. Verification of this would require a very large amount
computational effort, because of the extremely slow evolution observed at the end of
present simulation.

Equilibria of the present dynamic problem correspond to local minima of a nonconv
variational problem. For example, one can\Wé{vVu) = min{\Wp(Vu), Wi (Vu)}, with Wy
andW; asin (2.1); thudV is a nonconvex two-well function with minima & = (0, 0) and
(0, £). One then seeks to minimize the total stored elastic ergfgy= fQW(Vu) dAover
a suitable class of functionssatisfying the boundary condition (6.1). It is well known [10]
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FIG. 10. Total energy versus time for the simulation of Figk3<0.3, M; =0.1, M, =3,a=0.04, b=0.03).

that this problem does not possess a global minimum. This is due to nonconvexity anc
incompatibility of the high-strain branct/, with the boundary conditions. On the other
hand, there are minimizing sequences of functifing, for which the energy tends to its
infimum value of zero asm — oco. A typical term of such a sequence is a collection of
horizontal layers in the high-strain well witfiu = £, alternating with layers in the low-
strain wellVu = (0, 0). In particularuy, is piecewise linear and hashorizontal interfaces.
Compatibility with the boundary conditions at the vertical portions of the boundary
achieved by introducing a transition zone or boundary layer, where valiiés affe not at
the two minima ofW. This zone penalizes the total energy. However, the size of this zo
and thus the total energy approach zero in the limit asco, while the number of layers
grows unbounded. The tapering of needles near the boundary observed in our simula
occurs precisely in order to accommodate the boundary conditions. The latter force
values ofuy at the vertical portions od<2 to be in the low-strain phase. As a result, a flat
high-strain phase layer cannot extend all the way to the boundary. Instead, it tapers ir
tip and touche9 Q2 only at isolated points.

Kohn and Miller [19, 20] consider an alternative model that includasgface energy
at interfaces. They find equilibria where twin layers branch and taper near the interfe
The resulting construction has various similarities with the final configuration encountel
in the above simulation. It is interesting to note that Model | adopted here introduce
surface energy term as a consequence of regularization, that hovagighes in the sharp-
interface limitase — 0. For Model |, the total energ (t) in (6.3) admits the decomposition
E(t) = Ep(t) + Es(t). The bulk (kinetic plus stored elastic) energy actually equals the
total energy associated with Model Il (integral of (4.2) o8 The surface (interfacial)
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energyEg equals the last term in expression (6.3) of the total energy, namely,

1
Es(t) = / SH)L— Hp] dA (6.4)
Q

This term depends only on the interface configuration thraughd does not involv& u.

In contrast, the explicit surface energy introduced by Fried and Gurtin [13] depends
the order parameter gradient (analogou¥{9 and does not vanish in the sharp-interface
limit. The integrand in (6.4) is positive inside the transition layer (where< ) and
vanishes elsewhere. Recall thats frequently reinitialized to equal signed distance from
the interface. As a result, we have the estimater alLe/2, wherelL is the total interface
length and the constaat= ffl H1(2)(1—H1(2)) dz~ 0.2. Hence E vanishes in the sharp-
interface limit ag — 0. In our simulations howeveE;s typically increases due to interface
growth, while Ey decays due to dissipation. Equilibrium is reached when the competitic
of the two prohibits further decrease of the total eneigyn our last simulation (Fig. 9)
with e =0.01, att = 100 we have. ~ 5 so thatEs ~ 0.005, whileE ~0.013 in Fig. 10. A.
further separation of two into four needles would almost dolalenaking it comparable
to the total energy. As a result, it seems unlikely that any further topological change wo
take place. We suspect that the final configuration of Fig. ®=a100 is very close to
equilibrium. Further topological change is presumably possiklésifdecreased; however,
that would require a reduction of mesh size from the current valle-01/256. Model II
does not involve surface energy and might allow repeated topological changes were it
for numerical difficulties associated with interface kinetics discussed previously.

7. CONCLUDING REMARKS

The level-set method presented here is efficient in capturing various aspects of the
lution of twinning. As it does not rely on interface tracking and remeshing, it is well suite
for the study of complex microstructure formation.

In contrast to other ingredients of the constitutive law, the kinetic relation is very diffict
to measure from experiments. The fact that the kinetic relation can be assigned independ
in the current scheme is a strong point of the method; it allows comparison and tes
of various proposed kinetic models. Here, for instance, we demonstrate that orienta
dependence (anisotropy) in the kinetic relation is crucial for prediction of the shape
twin needles. Various other regularized theories lack this flexibility. Regularization due
viscosity and higher gradients fixes a particular type of kinetics that cannot be modifi
Generalizations of the kinetics thatinclude, for example, curvature dependence are relati
easy to implement in the present method.

Our results suggest that the energy functional for the corresponding static problem 1
possess multiple local minima, each with a higher number of disjoint layers, but low
energy. Transition from one such state to another requires an increase in the numb
layers, and hence a topological change. Tip splitting, followed by merging of reentrant ti
provides a mechanism for this change. This observation agrees with the conclusion
Abeyaratneet al.[1]. The splitting event is a complicated dynamic process that is not full
understood from an analytical viewpoint. Our simulations indicate that it occurs abovi
critical level of loading.

Our model does not include a specific nucleation criterion analogous to the one ado
by Abeyaratne and Knowles [3]. Thus it cannot predict nucleation of a high-strain zone i
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region entirely in the low-strain phase, and vice versa. It is possible to incorporate a nu
ation criterion based on critical levels of strain for each phase, by a suitable modificat
of the level-set reinitialization scheme.

The method is fully capable of treating multiple phases of different crystal symmet
with three-dimensional kinematics and fully nonlinear stored-energy functions. When
extended, it is directly applicable to the study of the austenite—martensite transitions oc
ring in specific shape-memory alloys. Thermomechanical coupling, especially importan
transitions with substantial latent heat, can also be incorporated. We intend to pursue .
issues in later studies.
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